$$$\cos{\left(5 x^{2} \right)}$$$ 的積分

此計算器將求出 $$$\cos{\left(5 x^{2} \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \cos{\left(5 x^{2} \right)}\, dx$$$

解答

$$$u=\sqrt{5} x$$$

$$$du=\left(\sqrt{5} x\right)^{\prime }dx = \sqrt{5} dx$$$ (步驟見»),並可得 $$$dx = \frac{\sqrt{5} du}{5}$$$

因此,

$${\color{red}{\int{\cos{\left(5 x^{2} \right)} d x}}} = {\color{red}{\int{\frac{\sqrt{5} \cos{\left(u^{2} \right)}}{5} d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{\sqrt{5}}{5}$$$$$$f{\left(u \right)} = \cos{\left(u^{2} \right)}$$$

$${\color{red}{\int{\frac{\sqrt{5} \cos{\left(u^{2} \right)}}{5} d u}}} = {\color{red}{\left(\frac{\sqrt{5} \int{\cos{\left(u^{2} \right)} d u}}{5}\right)}}$$

此積分(菲涅耳餘弦積分)不存在閉式表示:

$$\frac{\sqrt{5} {\color{red}{\int{\cos{\left(u^{2} \right)} d u}}}}{5} = \frac{\sqrt{5} {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} u}{\sqrt{\pi}}\right)}{2}\right)}}}{5}$$

回顧一下 $$$u=\sqrt{5} x$$$

$$\frac{\sqrt{10} \sqrt{\pi} C\left(\frac{\sqrt{2} {\color{red}{u}}}{\sqrt{\pi}}\right)}{10} = \frac{\sqrt{10} \sqrt{\pi} C\left(\frac{\sqrt{2} {\color{red}{\sqrt{5} x}}}{\sqrt{\pi}}\right)}{10}$$

因此,

$$\int{\cos{\left(5 x^{2} \right)} d x} = \frac{\sqrt{10} \sqrt{\pi} C\left(\frac{\sqrt{10} x}{\sqrt{\pi}}\right)}{10}$$

加上積分常數:

$$\int{\cos{\left(5 x^{2} \right)} d x} = \frac{\sqrt{10} \sqrt{\pi} C\left(\frac{\sqrt{10} x}{\sqrt{\pi}}\right)}{10}+C$$

答案

$$$\int \cos{\left(5 x^{2} \right)}\, dx = \frac{\sqrt{10} \sqrt{\pi} C\left(\frac{\sqrt{10} x}{\sqrt{\pi}}\right)}{10} + C$$$A


Please try a new game Rotatly