$$$\cos{\left(5 t \right)} \cos{\left(10 t \right)}$$$ 的積分

此計算器將求出 $$$\cos{\left(5 t \right)} \cos{\left(10 t \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \cos{\left(5 t \right)} \cos{\left(10 t \right)}\, dt$$$

解答

使用公式 $$$\cos\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)+\frac{1}{2} \cos\left(\alpha+\beta \right)$$$,令 $$$\alpha=5 t$$$$$$\beta=10 t$$$,將被積函數改寫:

$${\color{red}{\int{\cos{\left(5 t \right)} \cos{\left(10 t \right)} d t}}} = {\color{red}{\int{\left(\frac{\cos{\left(5 t \right)}}{2} + \frac{\cos{\left(15 t \right)}}{2}\right)d t}}}$$

套用常數倍法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(t \right)} = \cos{\left(5 t \right)} + \cos{\left(15 t \right)}$$$

$${\color{red}{\int{\left(\frac{\cos{\left(5 t \right)}}{2} + \frac{\cos{\left(15 t \right)}}{2}\right)d t}}} = {\color{red}{\left(\frac{\int{\left(\cos{\left(5 t \right)} + \cos{\left(15 t \right)}\right)d t}}{2}\right)}}$$

逐項積分:

$$\frac{{\color{red}{\int{\left(\cos{\left(5 t \right)} + \cos{\left(15 t \right)}\right)d t}}}}{2} = \frac{{\color{red}{\left(\int{\cos{\left(5 t \right)} d t} + \int{\cos{\left(15 t \right)} d t}\right)}}}{2}$$

$$$u=5 t$$$

$$$du=\left(5 t\right)^{\prime }dt = 5 dt$$$ (步驟見»),並可得 $$$dt = \frac{du}{5}$$$

所以,

$$\frac{\int{\cos{\left(15 t \right)} d t}}{2} + \frac{{\color{red}{\int{\cos{\left(5 t \right)} d t}}}}{2} = \frac{\int{\cos{\left(15 t \right)} d t}}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{5} d u}}}}{2}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{5}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$

$$\frac{\int{\cos{\left(15 t \right)} d t}}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{5} d u}}}}{2} = \frac{\int{\cos{\left(15 t \right)} d t}}{2} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{5}\right)}}}{2}$$

餘弦函數的積分為 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$

$$\frac{\int{\cos{\left(15 t \right)} d t}}{2} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{10} = \frac{\int{\cos{\left(15 t \right)} d t}}{2} + \frac{{\color{red}{\sin{\left(u \right)}}}}{10}$$

回顧一下 $$$u=5 t$$$

$$\frac{\int{\cos{\left(15 t \right)} d t}}{2} + \frac{\sin{\left({\color{red}{u}} \right)}}{10} = \frac{\int{\cos{\left(15 t \right)} d t}}{2} + \frac{\sin{\left({\color{red}{\left(5 t\right)}} \right)}}{10}$$

$$$u=15 t$$$

$$$du=\left(15 t\right)^{\prime }dt = 15 dt$$$ (步驟見»),並可得 $$$dt = \frac{du}{15}$$$

該積分變為

$$\frac{\sin{\left(5 t \right)}}{10} + \frac{{\color{red}{\int{\cos{\left(15 t \right)} d t}}}}{2} = \frac{\sin{\left(5 t \right)}}{10} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{15} d u}}}}{2}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{15}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$

$$\frac{\sin{\left(5 t \right)}}{10} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{15} d u}}}}{2} = \frac{\sin{\left(5 t \right)}}{10} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{15}\right)}}}{2}$$

餘弦函數的積分為 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$

$$\frac{\sin{\left(5 t \right)}}{10} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{30} = \frac{\sin{\left(5 t \right)}}{10} + \frac{{\color{red}{\sin{\left(u \right)}}}}{30}$$

回顧一下 $$$u=15 t$$$

$$\frac{\sin{\left(5 t \right)}}{10} + \frac{\sin{\left({\color{red}{u}} \right)}}{30} = \frac{\sin{\left(5 t \right)}}{10} + \frac{\sin{\left({\color{red}{\left(15 t\right)}} \right)}}{30}$$

因此,

$$\int{\cos{\left(5 t \right)} \cos{\left(10 t \right)} d t} = \frac{\sin{\left(5 t \right)}}{10} + \frac{\sin{\left(15 t \right)}}{30}$$

加上積分常數:

$$\int{\cos{\left(5 t \right)} \cos{\left(10 t \right)} d t} = \frac{\sin{\left(5 t \right)}}{10} + \frac{\sin{\left(15 t \right)}}{30}+C$$

答案

$$$\int \cos{\left(5 t \right)} \cos{\left(10 t \right)}\, dt = \left(\frac{\sin{\left(5 t \right)}}{10} + \frac{\sin{\left(15 t \right)}}{30}\right) + C$$$A


Please try a new game Rotatly