$$$\cos{\left(\frac{x}{4} \right)}$$$ 的積分
您的輸入
求$$$\int \cos{\left(\frac{x}{4} \right)}\, dx$$$。
解答
令 $$$u=\frac{x}{4}$$$。
則 $$$du=\left(\frac{x}{4}\right)^{\prime }dx = \frac{dx}{4}$$$ (步驟見»),並可得 $$$dx = 4 du$$$。
因此,
$${\color{red}{\int{\cos{\left(\frac{x}{4} \right)} d x}}} = {\color{red}{\int{4 \cos{\left(u \right)} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=4$$$ 與 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$${\color{red}{\int{4 \cos{\left(u \right)} d u}}} = {\color{red}{\left(4 \int{\cos{\left(u \right)} d u}\right)}}$$
餘弦函數的積分為 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$4 {\color{red}{\int{\cos{\left(u \right)} d u}}} = 4 {\color{red}{\sin{\left(u \right)}}}$$
回顧一下 $$$u=\frac{x}{4}$$$:
$$4 \sin{\left({\color{red}{u}} \right)} = 4 \sin{\left({\color{red}{\left(\frac{x}{4}\right)}} \right)}$$
因此,
$$\int{\cos{\left(\frac{x}{4} \right)} d x} = 4 \sin{\left(\frac{x}{4} \right)}$$
加上積分常數:
$$\int{\cos{\left(\frac{x}{4} \right)} d x} = 4 \sin{\left(\frac{x}{4} \right)}+C$$
答案
$$$\int \cos{\left(\frac{x}{4} \right)}\, dx = 4 \sin{\left(\frac{x}{4} \right)} + C$$$A