$$$\operatorname{atan}{\left(\sqrt{x} \right)}$$$ 的積分
您的輸入
求$$$\int \operatorname{atan}{\left(\sqrt{x} \right)}\, dx$$$。
解答
對於積分 $$$\int{\operatorname{atan}{\left(\sqrt{x} \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
令 $$$\operatorname{u}=\operatorname{atan}{\left(\sqrt{x} \right)}$$$ 與 $$$\operatorname{dv}=dx$$$。
則 $$$\operatorname{du}=\left(\operatorname{atan}{\left(\sqrt{x} \right)}\right)^{\prime }dx=\frac{1}{2 \sqrt{x} \left(x + 1\right)} dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{1 d x}=x$$$(步驟見 »)。
因此,
$${\color{red}{\int{\operatorname{atan}{\left(\sqrt{x} \right)} d x}}}={\color{red}{\left(\operatorname{atan}{\left(\sqrt{x} \right)} \cdot x-\int{x \cdot \frac{1}{2 \sqrt{x} \left(x + 1\right)} d x}\right)}}={\color{red}{\left(x \operatorname{atan}{\left(\sqrt{x} \right)} - \int{\frac{\sqrt{x}}{2 x + 2} d x}\right)}}$$
簡化被積函數:
$$x \operatorname{atan}{\left(\sqrt{x} \right)} - {\color{red}{\int{\frac{\sqrt{x}}{2 x + 2} d x}}} = x \operatorname{atan}{\left(\sqrt{x} \right)} - {\color{red}{\int{\frac{\sqrt{x}}{2 \left(x + 1\right)} d x}}}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(x \right)} = \frac{\sqrt{x}}{x + 1}$$$:
$$x \operatorname{atan}{\left(\sqrt{x} \right)} - {\color{red}{\int{\frac{\sqrt{x}}{2 \left(x + 1\right)} d x}}} = x \operatorname{atan}{\left(\sqrt{x} \right)} - {\color{red}{\left(\frac{\int{\frac{\sqrt{x}}{x + 1} d x}}{2}\right)}}$$
令 $$$u=\sqrt{x}$$$。
則 $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (步驟見»),並可得 $$$\frac{dx}{\sqrt{x}} = 2 du$$$。
因此,
$$x \operatorname{atan}{\left(\sqrt{x} \right)} - \frac{{\color{red}{\int{\frac{\sqrt{x}}{x + 1} d x}}}}{2} = x \operatorname{atan}{\left(\sqrt{x} \right)} - \frac{{\color{red}{\int{\frac{2 u^{2}}{u^{2} + 1} d u}}}}{2}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=2$$$ 與 $$$f{\left(u \right)} = \frac{u^{2}}{u^{2} + 1}$$$:
$$x \operatorname{atan}{\left(\sqrt{x} \right)} - \frac{{\color{red}{\int{\frac{2 u^{2}}{u^{2} + 1} d u}}}}{2} = x \operatorname{atan}{\left(\sqrt{x} \right)} - \frac{{\color{red}{\left(2 \int{\frac{u^{2}}{u^{2} + 1} d u}\right)}}}{2}$$
重寫並拆分分式:
$$x \operatorname{atan}{\left(\sqrt{x} \right)} - {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = x \operatorname{atan}{\left(\sqrt{x} \right)} - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$
逐項積分:
$$x \operatorname{atan}{\left(\sqrt{x} \right)} - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = x \operatorname{atan}{\left(\sqrt{x} \right)} - {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, du = c u$$$:
$$x \operatorname{atan}{\left(\sqrt{x} \right)} + \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\int{1 d u}}} = x \operatorname{atan}{\left(\sqrt{x} \right)} + \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{u}}$$
$$$\frac{1}{u^{2} + 1}$$$ 的積分是 $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$- u + x \operatorname{atan}{\left(\sqrt{x} \right)} + {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = - u + x \operatorname{atan}{\left(\sqrt{x} \right)} + {\color{red}{\operatorname{atan}{\left(u \right)}}}$$
回顧一下 $$$u=\sqrt{x}$$$:
$$x \operatorname{atan}{\left(\sqrt{x} \right)} + \operatorname{atan}{\left({\color{red}{u}} \right)} - {\color{red}{u}} = x \operatorname{atan}{\left(\sqrt{x} \right)} + \operatorname{atan}{\left({\color{red}{\sqrt{x}}} \right)} - {\color{red}{\sqrt{x}}}$$
因此,
$$\int{\operatorname{atan}{\left(\sqrt{x} \right)} d x} = - \sqrt{x} + x \operatorname{atan}{\left(\sqrt{x} \right)} + \operatorname{atan}{\left(\sqrt{x} \right)}$$
加上積分常數:
$$\int{\operatorname{atan}{\left(\sqrt{x} \right)} d x} = - \sqrt{x} + x \operatorname{atan}{\left(\sqrt{x} \right)} + \operatorname{atan}{\left(\sqrt{x} \right)}+C$$
答案
$$$\int \operatorname{atan}{\left(\sqrt{x} \right)}\, dx = \left(- \sqrt{x} + x \operatorname{atan}{\left(\sqrt{x} \right)} + \operatorname{atan}{\left(\sqrt{x} \right)}\right) + C$$$A