$$$8 x \ln\left(4 x^{2}\right)$$$ 的積分
您的輸入
求$$$\int 8 x \ln\left(4 x^{2}\right)\, dx$$$。
解答
令 $$$u=4 x^{2}$$$。
則 $$$du=\left(4 x^{2}\right)^{\prime }dx = 8 x dx$$$ (步驟見»),並可得 $$$x dx = \frac{du}{8}$$$。
該積分變為
$${\color{red}{\int{8 x \ln{\left(4 x^{2} \right)} d x}}} = {\color{red}{\int{\ln{\left(u \right)} d u}}}$$
對於積分 $$$\int{\ln{\left(u \right)} d u}$$$,使用分部積分法 $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$。
令 $$$\operatorname{g}=\ln{\left(u \right)}$$$ 與 $$$\operatorname{dv}=du$$$。
則 $$$\operatorname{dg}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$(步驟見 »),且 $$$\operatorname{v}=\int{1 d u}=u$$$(步驟見 »)。
因此,
$${\color{red}{\int{\ln{\left(u \right)} d u}}}={\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}={\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, du = c u$$$:
$$u \ln{\left(u \right)} - {\color{red}{\int{1 d u}}} = u \ln{\left(u \right)} - {\color{red}{u}}$$
回顧一下 $$$u=4 x^{2}$$$:
$$- {\color{red}{u}} + {\color{red}{u}} \ln{\left({\color{red}{u}} \right)} = - {\color{red}{\left(4 x^{2}\right)}} + {\color{red}{\left(4 x^{2}\right)}} \ln{\left({\color{red}{\left(4 x^{2}\right)}} \right)}$$
因此,
$$\int{8 x \ln{\left(4 x^{2} \right)} d x} = 4 x^{2} \ln{\left(4 x^{2} \right)} - 4 x^{2}$$
化簡:
$$\int{8 x \ln{\left(4 x^{2} \right)} d x} = 4 x^{2} \left(2 \ln{\left(x \right)} - 1 + 2 \ln{\left(2 \right)}\right)$$
加上積分常數:
$$\int{8 x \ln{\left(4 x^{2} \right)} d x} = 4 x^{2} \left(2 \ln{\left(x \right)} - 1 + 2 \ln{\left(2 \right)}\right)+C$$
答案
$$$\int 8 x \ln\left(4 x^{2}\right)\, dx = 4 x^{2} \left(2 \ln\left(x\right) - 1 + 2 \ln\left(2\right)\right) + C$$$A