$$$5 \sin{\left(5 x \right)}$$$ 的積分
您的輸入
求$$$\int 5 \sin{\left(5 x \right)}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=5$$$ 與 $$$f{\left(x \right)} = \sin{\left(5 x \right)}$$$:
$${\color{red}{\int{5 \sin{\left(5 x \right)} d x}}} = {\color{red}{\left(5 \int{\sin{\left(5 x \right)} d x}\right)}}$$
令 $$$u=5 x$$$。
則 $$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{5}$$$。
因此,
$$5 {\color{red}{\int{\sin{\left(5 x \right)} d x}}} = 5 {\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{5}$$$ 與 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$5 {\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}} = 5 {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{5}\right)}}$$
正弦函數的積分為 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$${\color{red}{\int{\sin{\left(u \right)} d u}}} = {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
回顧一下 $$$u=5 x$$$:
$$- \cos{\left({\color{red}{u}} \right)} = - \cos{\left({\color{red}{\left(5 x\right)}} \right)}$$
因此,
$$\int{5 \sin{\left(5 x \right)} d x} = - \cos{\left(5 x \right)}$$
加上積分常數:
$$\int{5 \sin{\left(5 x \right)} d x} = - \cos{\left(5 x \right)}+C$$
答案
$$$\int 5 \sin{\left(5 x \right)}\, dx = - \cos{\left(5 x \right)} + C$$$A