$$$- z_{2} \left(3 z - 3\right) + 4$$$ 對 $$$z$$$ 的積分
您的輸入
求$$$\int \left(- z_{2} \left(3 z - 3\right) + 4\right)\, dz$$$。
解答
逐項積分:
$${\color{red}{\int{\left(- z_{2} \left(3 z - 3\right) + 4\right)d z}}} = {\color{red}{\left(\int{4 d z} - \int{z_{2} \left(3 z - 3\right) d z}\right)}}$$
配合 $$$c=4$$$,應用常數法則 $$$\int c\, dz = c z$$$:
$$- \int{z_{2} \left(3 z - 3\right) d z} + {\color{red}{\int{4 d z}}} = - \int{z_{2} \left(3 z - 3\right) d z} + {\color{red}{\left(4 z\right)}}$$
簡化被積函數:
$$4 z - {\color{red}{\int{z_{2} \left(3 z - 3\right) d z}}} = 4 z - {\color{red}{\int{3 z_{2} \left(z - 1\right) d z}}}$$
套用常數倍法則 $$$\int c f{\left(z \right)}\, dz = c \int f{\left(z \right)}\, dz$$$,使用 $$$c=3 z_{2}$$$ 與 $$$f{\left(z \right)} = z - 1$$$:
$$4 z - {\color{red}{\int{3 z_{2} \left(z - 1\right) d z}}} = 4 z - {\color{red}{\left(3 z_{2} \int{\left(z - 1\right)d z}\right)}}$$
逐項積分:
$$4 z - 3 z_{2} {\color{red}{\int{\left(z - 1\right)d z}}} = 4 z - 3 z_{2} {\color{red}{\left(- \int{1 d z} + \int{z d z}\right)}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, dz = c z$$$:
$$4 z - 3 z_{2} \left(\int{z d z} - {\color{red}{\int{1 d z}}}\right) = 4 z - 3 z_{2} \left(\int{z d z} - {\color{red}{z}}\right)$$
套用冪次法則 $$$\int z^{n}\, dz = \frac{z^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$:
$$4 z - 3 z_{2} \left(- z + {\color{red}{\int{z d z}}}\right)=4 z - 3 z_{2} \left(- z + {\color{red}{\frac{z^{1 + 1}}{1 + 1}}}\right)=4 z - 3 z_{2} \left(- z + {\color{red}{\left(\frac{z^{2}}{2}\right)}}\right)$$
因此,
$$\int{\left(- z_{2} \left(3 z - 3\right) + 4\right)d z} = 4 z - 3 z_{2} \left(\frac{z^{2}}{2} - z\right)$$
化簡:
$$\int{\left(- z_{2} \left(3 z - 3\right) + 4\right)d z} = \frac{z \left(- 3 z_{2} \left(z - 2\right) + 8\right)}{2}$$
加上積分常數:
$$\int{\left(- z_{2} \left(3 z - 3\right) + 4\right)d z} = \frac{z \left(- 3 z_{2} \left(z - 2\right) + 8\right)}{2}+C$$
答案
$$$\int \left(- z_{2} \left(3 z - 3\right) + 4\right)\, dz = \frac{z \left(- 3 z_{2} \left(z - 2\right) + 8\right)}{2} + C$$$A