$$$4 \sin^{2}{\left(x \right)} \cos^{3}{\left(x \right)}$$$ 的積分

此計算器將求出 $$$4 \sin^{2}{\left(x \right)} \cos^{3}{\left(x \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int 4 \sin^{2}{\left(x \right)} \cos^{3}{\left(x \right)}\, dx$$$

解答

套用降冪公式 $$$\cos^{3}{\left(\alpha \right)} = \frac{3 \cos{\left(\alpha \right)}}{4} + \frac{\cos{\left(3 \alpha \right)}}{4}$$$,令 $$$\alpha=x$$$:

$${\color{red}{\int{4 \sin^{2}{\left(x \right)} \cos^{3}{\left(x \right)} d x}}} = {\color{red}{\int{\left(3 \cos{\left(x \right)} + \cos{\left(3 x \right)}\right) \sin^{2}{\left(x \right)} d x}}}$$

套用降冪公式 $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$,令 $$$\alpha=x$$$:

$${\color{red}{\int{\left(3 \cos{\left(x \right)} + \cos{\left(3 x \right)}\right) \sin^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{\left(1 - \cos{\left(2 x \right)}\right) \left(3 \cos{\left(x \right)} + \cos{\left(3 x \right)}\right)}{2} d x}}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{8}$$$$$$f{\left(x \right)} = 4 \left(1 - \cos{\left(2 x \right)}\right) \left(3 \cos{\left(x \right)} + \cos{\left(3 x \right)}\right)$$$

$${\color{red}{\int{\frac{\left(1 - \cos{\left(2 x \right)}\right) \left(3 \cos{\left(x \right)} + \cos{\left(3 x \right)}\right)}{2} d x}}} = {\color{red}{\left(\frac{\int{4 \left(1 - \cos{\left(2 x \right)}\right) \left(3 \cos{\left(x \right)} + \cos{\left(3 x \right)}\right) d x}}{8}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{4 \left(1 - \cos{\left(2 x \right)}\right) \left(3 \cos{\left(x \right)} + \cos{\left(3 x \right)}\right) d x}}}}{8} = \frac{{\color{red}{\int{\left(- 12 \cos{\left(x \right)} \cos{\left(2 x \right)} + 12 \cos{\left(x \right)} - 4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} + 4 \cos{\left(3 x \right)}\right)d x}}}}{8}$$

逐項積分:

$$\frac{{\color{red}{\int{\left(- 12 \cos{\left(x \right)} \cos{\left(2 x \right)} + 12 \cos{\left(x \right)} - 4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} + 4 \cos{\left(3 x \right)}\right)d x}}}}{8} = \frac{{\color{red}{\left(- \int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x} - \int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x} + \int{12 \cos{\left(x \right)} d x} + \int{4 \cos{\left(3 x \right)} d x}\right)}}}{8}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=4$$$$$$f{\left(x \right)} = \cos{\left(3 x \right)}$$$

$$- \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{\int{12 \cos{\left(x \right)} d x}}{8} + \frac{{\color{red}{\int{4 \cos{\left(3 x \right)} d x}}}}{8} = - \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{\int{12 \cos{\left(x \right)} d x}}{8} + \frac{{\color{red}{\left(4 \int{\cos{\left(3 x \right)} d x}\right)}}}{8}$$

$$$u=3 x$$$

$$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{3}$$$

該積分變為

$$- \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{\int{12 \cos{\left(x \right)} d x}}{8} + \frac{{\color{red}{\int{\cos{\left(3 x \right)} d x}}}}{2} = - \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{\int{12 \cos{\left(x \right)} d x}}{8} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{2}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{3}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$

$$- \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{\int{12 \cos{\left(x \right)} d x}}{8} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{2} = - \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{\int{12 \cos{\left(x \right)} d x}}{8} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{3}\right)}}}{2}$$

餘弦函數的積分為 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$

$$- \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{\int{12 \cos{\left(x \right)} d x}}{8} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{6} = - \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{\int{12 \cos{\left(x \right)} d x}}{8} + \frac{{\color{red}{\sin{\left(u \right)}}}}{6}$$

回顧一下 $$$u=3 x$$$

$$- \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{\int{12 \cos{\left(x \right)} d x}}{8} + \frac{\sin{\left({\color{red}{u}} \right)}}{6} = - \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{\int{12 \cos{\left(x \right)} d x}}{8} + \frac{\sin{\left({\color{red}{\left(3 x\right)}} \right)}}{6}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=12$$$$$$f{\left(x \right)} = \cos{\left(x \right)}$$$

$$\frac{\sin{\left(3 x \right)}}{6} - \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{{\color{red}{\int{12 \cos{\left(x \right)} d x}}}}{8} = \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{{\color{red}{\left(12 \int{\cos{\left(x \right)} d x}\right)}}}{8}$$

餘弦函數的積分為 $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$

$$\frac{\sin{\left(3 x \right)}}{6} - \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{3 {\color{red}{\int{\cos{\left(x \right)} d x}}}}{2} = \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{8} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} + \frac{3 {\color{red}{\sin{\left(x \right)}}}}{2}$$

使用公式 $$$\cos\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)+\frac{1}{2} \cos\left(\alpha+\beta \right)$$$,以 $$$\alpha=x$$$$$$\beta=2 x$$$$$$\cos\left(x \right)\cos\left(2 x \right)$$$ 改寫:

$$\frac{3 \sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{{\color{red}{\int{12 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}}}{8} = \frac{3 \sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{{\color{red}{\int{\left(6 \cos{\left(x \right)} + 6 \cos{\left(3 x \right)}\right)d x}}}}{8}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = 12 \cos{\left(x \right)} + 12 \cos{\left(3 x \right)}$$$

$$\frac{3 \sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{{\color{red}{\int{\left(6 \cos{\left(x \right)} + 6 \cos{\left(3 x \right)}\right)d x}}}}{8} = \frac{3 \sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{{\color{red}{\left(\frac{\int{\left(12 \cos{\left(x \right)} + 12 \cos{\left(3 x \right)}\right)d x}}{2}\right)}}}{8}$$

逐項積分:

$$\frac{3 \sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{{\color{red}{\int{\left(12 \cos{\left(x \right)} + 12 \cos{\left(3 x \right)}\right)d x}}}}{16} = \frac{3 \sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{{\color{red}{\left(\int{12 \cos{\left(x \right)} d x} + \int{12 \cos{\left(3 x \right)} d x}\right)}}}{16}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=12$$$$$$f{\left(x \right)} = \cos{\left(x \right)}$$$

$$\frac{3 \sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{\int{12 \cos{\left(3 x \right)} d x}}{16} - \frac{{\color{red}{\int{12 \cos{\left(x \right)} d x}}}}{16} = \frac{3 \sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{\int{12 \cos{\left(3 x \right)} d x}}{16} - \frac{{\color{red}{\left(12 \int{\cos{\left(x \right)} d x}\right)}}}{16}$$

餘弦函數的積分為 $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$

$$\frac{3 \sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{\int{12 \cos{\left(3 x \right)} d x}}{16} - \frac{3 {\color{red}{\int{\cos{\left(x \right)} d x}}}}{4} = \frac{3 \sin{\left(x \right)}}{2} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{\int{12 \cos{\left(3 x \right)} d x}}{16} - \frac{3 {\color{red}{\sin{\left(x \right)}}}}{4}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=12$$$$$$f{\left(x \right)} = \cos{\left(3 x \right)}$$$

$$\frac{3 \sin{\left(x \right)}}{4} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{{\color{red}{\int{12 \cos{\left(3 x \right)} d x}}}}{16} = \frac{3 \sin{\left(x \right)}}{4} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{{\color{red}{\left(12 \int{\cos{\left(3 x \right)} d x}\right)}}}{16}$$

積分 $$$\int{\cos{\left(3 x \right)} d x}$$$ 已經計算過:

$$\int{\cos{\left(3 x \right)} d x} = \frac{\sin{\left(3 x \right)}}{3}$$

因此,

$$\frac{3 \sin{\left(x \right)}}{4} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{3 {\color{red}{\int{\cos{\left(3 x \right)} d x}}}}{4} = \frac{3 \sin{\left(x \right)}}{4} + \frac{\sin{\left(3 x \right)}}{6} - \frac{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}{8} - \frac{3 {\color{red}{\left(\frac{\sin{\left(3 x \right)}}{3}\right)}}}{4}$$

使用公式 $$$\cos\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)+\frac{1}{2} \cos\left(\alpha+\beta \right)$$$,以 $$$\alpha=2 x$$$$$$\beta=3 x$$$$$$\cos\left(2 x \right)\cos\left(3 x \right)$$$ 改寫:

$$\frac{3 \sin{\left(x \right)}}{4} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\int{4 \cos{\left(2 x \right)} \cos{\left(3 x \right)} d x}}}}{8} = \frac{3 \sin{\left(x \right)}}{4} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\int{\left(2 \cos{\left(x \right)} + 2 \cos{\left(5 x \right)}\right)d x}}}}{8}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = 4 \cos{\left(x \right)} + 4 \cos{\left(5 x \right)}$$$

$$\frac{3 \sin{\left(x \right)}}{4} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\int{\left(2 \cos{\left(x \right)} + 2 \cos{\left(5 x \right)}\right)d x}}}}{8} = \frac{3 \sin{\left(x \right)}}{4} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\left(\frac{\int{\left(4 \cos{\left(x \right)} + 4 \cos{\left(5 x \right)}\right)d x}}{2}\right)}}}{8}$$

逐項積分:

$$\frac{3 \sin{\left(x \right)}}{4} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\int{\left(4 \cos{\left(x \right)} + 4 \cos{\left(5 x \right)}\right)d x}}}}{16} = \frac{3 \sin{\left(x \right)}}{4} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\left(\int{4 \cos{\left(x \right)} d x} + \int{4 \cos{\left(5 x \right)} d x}\right)}}}{16}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=4$$$$$$f{\left(x \right)} = \cos{\left(x \right)}$$$

$$\frac{3 \sin{\left(x \right)}}{4} - \frac{\sin{\left(3 x \right)}}{12} - \frac{\int{4 \cos{\left(5 x \right)} d x}}{16} - \frac{{\color{red}{\int{4 \cos{\left(x \right)} d x}}}}{16} = \frac{3 \sin{\left(x \right)}}{4} - \frac{\sin{\left(3 x \right)}}{12} - \frac{\int{4 \cos{\left(5 x \right)} d x}}{16} - \frac{{\color{red}{\left(4 \int{\cos{\left(x \right)} d x}\right)}}}{16}$$

餘弦函數的積分為 $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$

$$\frac{3 \sin{\left(x \right)}}{4} - \frac{\sin{\left(3 x \right)}}{12} - \frac{\int{4 \cos{\left(5 x \right)} d x}}{16} - \frac{{\color{red}{\int{\cos{\left(x \right)} d x}}}}{4} = \frac{3 \sin{\left(x \right)}}{4} - \frac{\sin{\left(3 x \right)}}{12} - \frac{\int{4 \cos{\left(5 x \right)} d x}}{16} - \frac{{\color{red}{\sin{\left(x \right)}}}}{4}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=4$$$$$$f{\left(x \right)} = \cos{\left(5 x \right)}$$$

$$\frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\int{4 \cos{\left(5 x \right)} d x}}}}{16} = \frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\left(4 \int{\cos{\left(5 x \right)} d x}\right)}}}{16}$$

$$$v=5 x$$$

$$$dv=\left(5 x\right)^{\prime }dx = 5 dx$$$ (步驟見»),並可得 $$$dx = \frac{dv}{5}$$$

該積分變為

$$\frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\int{\cos{\left(5 x \right)} d x}}}}{4} = \frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{5} d v}}}}{4}$$

套用常數倍法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$,使用 $$$c=\frac{1}{5}$$$$$$f{\left(v \right)} = \cos{\left(v \right)}$$$

$$\frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{5} d v}}}}{4} = \frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{5}\right)}}}{4}$$

餘弦函數的積分為 $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$

$$\frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{20} = \frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{{\color{red}{\sin{\left(v \right)}}}}{20}$$

回顧一下 $$$v=5 x$$$

$$\frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{\sin{\left({\color{red}{v}} \right)}}{20} = \frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{\sin{\left({\color{red}{\left(5 x\right)}} \right)}}{20}$$

因此,

$$\int{4 \sin^{2}{\left(x \right)} \cos^{3}{\left(x \right)} d x} = \frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{\sin{\left(5 x \right)}}{20}$$

加上積分常數:

$$\int{4 \sin^{2}{\left(x \right)} \cos^{3}{\left(x \right)} d x} = \frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{\sin{\left(5 x \right)}}{20}+C$$

答案

$$$\int 4 \sin^{2}{\left(x \right)} \cos^{3}{\left(x \right)}\, dx = \left(\frac{\sin{\left(x \right)}}{2} - \frac{\sin{\left(3 x \right)}}{12} - \frac{\sin{\left(5 x \right)}}{20}\right) + C$$$A


Please try a new game Rotatly