$$$\frac{4}{\sqrt{1 - x^{2}}}$$$ 的積分
您的輸入
求$$$\int \frac{4}{\sqrt{1 - x^{2}}}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=4$$$ 與 $$$f{\left(x \right)} = \frac{1}{\sqrt{1 - x^{2}}}$$$:
$${\color{red}{\int{\frac{4}{\sqrt{1 - x^{2}}} d x}}} = {\color{red}{\left(4 \int{\frac{1}{\sqrt{1 - x^{2}}} d x}\right)}}$$
$$$\frac{1}{\sqrt{1 - x^{2}}}$$$ 的積分是 $$$\int{\frac{1}{\sqrt{1 - x^{2}}} d x} = \operatorname{asin}{\left(x \right)}$$$:
$$4 {\color{red}{\int{\frac{1}{\sqrt{1 - x^{2}}} d x}}} = 4 {\color{red}{\operatorname{asin}{\left(x \right)}}}$$
因此,
$$\int{\frac{4}{\sqrt{1 - x^{2}}} d x} = 4 \operatorname{asin}{\left(x \right)}$$
加上積分常數:
$$\int{\frac{4}{\sqrt{1 - x^{2}}} d x} = 4 \operatorname{asin}{\left(x \right)}+C$$
答案
$$$\int \frac{4}{\sqrt{1 - x^{2}}}\, dx = 4 \operatorname{asin}{\left(x \right)} + C$$$A