$$$\frac{1}{126 t}$$$ 的積分
您的輸入
求$$$\int \frac{1}{126 t}\, dt$$$。
解答
套用常數倍法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$,使用 $$$c=\frac{1}{126}$$$ 與 $$$f{\left(t \right)} = \frac{1}{t}$$$:
$${\color{red}{\int{\frac{1}{126 t} d t}}} = {\color{red}{\left(\frac{\int{\frac{1}{t} d t}}{126}\right)}}$$
$$$\frac{1}{t}$$$ 的積分是 $$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{t} d t}}}}{126} = \frac{{\color{red}{\ln{\left(\left|{t}\right| \right)}}}}{126}$$
因此,
$$\int{\frac{1}{126 t} d t} = \frac{\ln{\left(\left|{t}\right| \right)}}{126}$$
加上積分常數:
$$\int{\frac{1}{126 t} d t} = \frac{\ln{\left(\left|{t}\right| \right)}}{126}+C$$
答案
$$$\int \frac{1}{126 t}\, dt = \frac{\ln\left(\left|{t}\right|\right)}{126} + C$$$A
Please try a new game Rotatly