$$$\frac{3}{t}$$$ 的積分
您的輸入
求$$$\int \frac{3}{t}\, dt$$$。
解答
套用常數倍法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$,使用 $$$c=3$$$ 與 $$$f{\left(t \right)} = \frac{1}{t}$$$:
$${\color{red}{\int{\frac{3}{t} d t}}} = {\color{red}{\left(3 \int{\frac{1}{t} d t}\right)}}$$
$$$\frac{1}{t}$$$ 的積分是 $$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}$$$:
$$3 {\color{red}{\int{\frac{1}{t} d t}}} = 3 {\color{red}{\ln{\left(\left|{t}\right| \right)}}}$$
因此,
$$\int{\frac{3}{t} d t} = 3 \ln{\left(\left|{t}\right| \right)}$$
加上積分常數:
$$\int{\frac{3}{t} d t} = 3 \ln{\left(\left|{t}\right| \right)}+C$$
答案
$$$\int \frac{3}{t}\, dt = 3 \ln\left(\left|{t}\right|\right) + C$$$A
Please try a new game Rotatly