$$$2 x \cos{\left(x^{2} \right)}$$$ 的積分
您的輸入
求$$$\int 2 x \cos{\left(x^{2} \right)}\, dx$$$。
解答
令 $$$u=x^{2}$$$。
則 $$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (步驟見»),並可得 $$$x dx = \frac{du}{2}$$$。
該積分變為
$${\color{red}{\int{2 x \cos{\left(x^{2} \right)} d x}}} = {\color{red}{\int{\cos{\left(u \right)} d u}}}$$
餘弦函數的積分為 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\cos{\left(u \right)} d u}}} = {\color{red}{\sin{\left(u \right)}}}$$
回顧一下 $$$u=x^{2}$$$:
$$\sin{\left({\color{red}{u}} \right)} = \sin{\left({\color{red}{x^{2}}} \right)}$$
因此,
$$\int{2 x \cos{\left(x^{2} \right)} d x} = \sin{\left(x^{2} \right)}$$
加上積分常數:
$$\int{2 x \cos{\left(x^{2} \right)} d x} = \sin{\left(x^{2} \right)}+C$$
答案
$$$\int 2 x \cos{\left(x^{2} \right)}\, dx = \sin{\left(x^{2} \right)} + C$$$A