$$$2 \sin^{2}{\left(t \right)}$$$ 的積分
您的輸入
求$$$\int 2 \sin^{2}{\left(t \right)}\, dt$$$。
解答
套用常數倍法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$,使用 $$$c=2$$$ 與 $$$f{\left(t \right)} = \sin^{2}{\left(t \right)}$$$:
$${\color{red}{\int{2 \sin^{2}{\left(t \right)} d t}}} = {\color{red}{\left(2 \int{\sin^{2}{\left(t \right)} d t}\right)}}$$
套用降冪公式 $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$,令 $$$\alpha=t$$$:
$$2 {\color{red}{\int{\sin^{2}{\left(t \right)} d t}}} = 2 {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 t \right)}}{2}\right)d t}}}$$
套用常數倍法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(t \right)} = 1 - \cos{\left(2 t \right)}$$$:
$$2 {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 t \right)}}{2}\right)d t}}} = 2 {\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 t \right)}\right)d t}}{2}\right)}}$$
逐項積分:
$${\color{red}{\int{\left(1 - \cos{\left(2 t \right)}\right)d t}}} = {\color{red}{\left(\int{1 d t} - \int{\cos{\left(2 t \right)} d t}\right)}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, dt = c t$$$:
$$- \int{\cos{\left(2 t \right)} d t} + {\color{red}{\int{1 d t}}} = - \int{\cos{\left(2 t \right)} d t} + {\color{red}{t}}$$
令 $$$u=2 t$$$。
則 $$$du=\left(2 t\right)^{\prime }dt = 2 dt$$$ (步驟見»),並可得 $$$dt = \frac{du}{2}$$$。
該積分可改寫為
$$t - {\color{red}{\int{\cos{\left(2 t \right)} d t}}} = t - {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$t - {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = t - {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$
餘弦函數的積分為 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$t - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{2} = t - \frac{{\color{red}{\sin{\left(u \right)}}}}{2}$$
回顧一下 $$$u=2 t$$$:
$$t - \frac{\sin{\left({\color{red}{u}} \right)}}{2} = t - \frac{\sin{\left({\color{red}{\left(2 t\right)}} \right)}}{2}$$
因此,
$$\int{2 \sin^{2}{\left(t \right)} d t} = t - \frac{\sin{\left(2 t \right)}}{2}$$
加上積分常數:
$$\int{2 \sin^{2}{\left(t \right)} d t} = t - \frac{\sin{\left(2 t \right)}}{2}+C$$
答案
$$$\int 2 \sin^{2}{\left(t \right)}\, dt = \left(t - \frac{\sin{\left(2 t \right)}}{2}\right) + C$$$A