$$$2 e^{y}$$$ 的積分
您的輸入
求$$$\int 2 e^{y}\, dy$$$。
解答
套用常數倍法則 $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$,使用 $$$c=2$$$ 與 $$$f{\left(y \right)} = e^{y}$$$:
$${\color{red}{\int{2 e^{y} d y}}} = {\color{red}{\left(2 \int{e^{y} d y}\right)}}$$
指數函數的積分為 $$$\int{e^{y} d y} = e^{y}$$$:
$$2 {\color{red}{\int{e^{y} d y}}} = 2 {\color{red}{e^{y}}}$$
因此,
$$\int{2 e^{y} d y} = 2 e^{y}$$
加上積分常數:
$$\int{2 e^{y} d y} = 2 e^{y}+C$$
答案
$$$\int 2 e^{y}\, dy = 2 e^{y} + C$$$A
Please try a new game Rotatly