$$$2 \cos{\left(\pi t \right)}$$$ 的積分
您的輸入
求$$$\int 2 \cos{\left(\pi t \right)}\, dt$$$。
解答
套用常數倍法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$,使用 $$$c=2$$$ 與 $$$f{\left(t \right)} = \cos{\left(\pi t \right)}$$$:
$${\color{red}{\int{2 \cos{\left(\pi t \right)} d t}}} = {\color{red}{\left(2 \int{\cos{\left(\pi t \right)} d t}\right)}}$$
令 $$$u=\pi t$$$。
則 $$$du=\left(\pi t\right)^{\prime }dt = \pi dt$$$ (步驟見»),並可得 $$$dt = \frac{du}{\pi}$$$。
該積分變為
$$2 {\color{red}{\int{\cos{\left(\pi t \right)} d t}}} = 2 {\color{red}{\int{\frac{\cos{\left(u \right)}}{\pi} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{\pi}$$$ 與 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$2 {\color{red}{\int{\frac{\cos{\left(u \right)}}{\pi} d u}}} = 2 {\color{red}{\frac{\int{\cos{\left(u \right)} d u}}{\pi}}}$$
餘弦函數的積分為 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{2 {\color{red}{\int{\cos{\left(u \right)} d u}}}}{\pi} = \frac{2 {\color{red}{\sin{\left(u \right)}}}}{\pi}$$
回顧一下 $$$u=\pi t$$$:
$$\frac{2 \sin{\left({\color{red}{u}} \right)}}{\pi} = \frac{2 \sin{\left({\color{red}{\pi t}} \right)}}{\pi}$$
因此,
$$\int{2 \cos{\left(\pi t \right)} d t} = \frac{2 \sin{\left(\pi t \right)}}{\pi}$$
加上積分常數:
$$\int{2 \cos{\left(\pi t \right)} d t} = \frac{2 \sin{\left(\pi t \right)}}{\pi}+C$$
答案
$$$\int 2 \cos{\left(\pi t \right)}\, dt = \frac{2 \sin{\left(\pi t \right)}}{\pi} + C$$$A