$$$\frac{3500 \sqrt{255}}{867 x^{\frac{3}{2}}}$$$ 的積分

此計算器將求出 $$$\frac{3500 \sqrt{255}}{867 x^{\frac{3}{2}}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{3500 \sqrt{255}}{867 x^{\frac{3}{2}}}\, dx$$$

解答

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{3500 \sqrt{255}}{867}$$$$$$f{\left(x \right)} = \frac{1}{x^{\frac{3}{2}}}$$$

$${\color{red}{\int{\frac{3500 \sqrt{255}}{867 x^{\frac{3}{2}}} d x}}} = {\color{red}{\left(\frac{3500 \sqrt{255} \int{\frac{1}{x^{\frac{3}{2}}} d x}}{867}\right)}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=- \frac{3}{2}$$$

$$\frac{3500 \sqrt{255} {\color{red}{\int{\frac{1}{x^{\frac{3}{2}}} d x}}}}{867}=\frac{3500 \sqrt{255} {\color{red}{\int{x^{- \frac{3}{2}} d x}}}}{867}=\frac{3500 \sqrt{255} {\color{red}{\frac{x^{- \frac{3}{2} + 1}}{- \frac{3}{2} + 1}}}}{867}=\frac{3500 \sqrt{255} {\color{red}{\left(- 2 x^{- \frac{1}{2}}\right)}}}{867}=\frac{3500 \sqrt{255} {\color{red}{\left(- \frac{2}{\sqrt{x}}\right)}}}{867}$$

因此,

$$\int{\frac{3500 \sqrt{255}}{867 x^{\frac{3}{2}}} d x} = - \frac{7000 \sqrt{255}}{867 \sqrt{x}}$$

加上積分常數:

$$\int{\frac{3500 \sqrt{255}}{867 x^{\frac{3}{2}}} d x} = - \frac{7000 \sqrt{255}}{867 \sqrt{x}}+C$$

答案

$$$\int \frac{3500 \sqrt{255}}{867 x^{\frac{3}{2}}}\, dx = - \frac{7000 \sqrt{255}}{867 \sqrt{x}} + C$$$A


Please try a new game Rotatly