$$$\frac{21 \sin{\left(\pi x \right)}}{2}$$$ 的積分

此計算器將求出 $$$\frac{21 \sin{\left(\pi x \right)}}{2}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{21 \sin{\left(\pi x \right)}}{2}\, dx$$$

解答

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{21}{2}$$$$$$f{\left(x \right)} = \sin{\left(\pi x \right)}$$$

$${\color{red}{\int{\frac{21 \sin{\left(\pi x \right)}}{2} d x}}} = {\color{red}{\left(\frac{21 \int{\sin{\left(\pi x \right)} d x}}{2}\right)}}$$

$$$u=\pi x$$$

$$$du=\left(\pi x\right)^{\prime }dx = \pi dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{\pi}$$$

因此,

$$\frac{21 {\color{red}{\int{\sin{\left(\pi x \right)} d x}}}}{2} = \frac{21 {\color{red}{\int{\frac{\sin{\left(u \right)}}{\pi} d u}}}}{2}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{\pi}$$$$$$f{\left(u \right)} = \sin{\left(u \right)}$$$

$$\frac{21 {\color{red}{\int{\frac{\sin{\left(u \right)}}{\pi} d u}}}}{2} = \frac{21 {\color{red}{\frac{\int{\sin{\left(u \right)} d u}}{\pi}}}}{2}$$

正弦函數的積分為 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$

$$\frac{21 {\color{red}{\int{\sin{\left(u \right)} d u}}}}{2 \pi} = \frac{21 {\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2 \pi}$$

回顧一下 $$$u=\pi x$$$

$$- \frac{21 \cos{\left({\color{red}{u}} \right)}}{2 \pi} = - \frac{21 \cos{\left({\color{red}{\pi x}} \right)}}{2 \pi}$$

因此,

$$\int{\frac{21 \sin{\left(\pi x \right)}}{2} d x} = - \frac{21 \cos{\left(\pi x \right)}}{2 \pi}$$

加上積分常數:

$$\int{\frac{21 \sin{\left(\pi x \right)}}{2} d x} = - \frac{21 \cos{\left(\pi x \right)}}{2 \pi}+C$$

答案

$$$\int \frac{21 \sin{\left(\pi x \right)}}{2}\, dx = - \frac{21 \cos{\left(\pi x \right)}}{2 \pi} + C$$$A


Please try a new game Rotatly