$$$- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}$$$ 的積分

此計算器將求出 $$$- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \left(- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}\right)\, dx$$$

解答

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=- \frac{3}{2}$$$$$$f{\left(x \right)} = \sin{\left(\frac{x}{2} - 1 \right)}$$$

$${\color{red}{\int{\left(- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}\right)d x}}} = {\color{red}{\left(- \frac{3 \int{\sin{\left(\frac{x}{2} - 1 \right)} d x}}{2}\right)}}$$

$$$u=\frac{x}{2} - 1$$$

$$$du=\left(\frac{x}{2} - 1\right)^{\prime }dx = \frac{dx}{2}$$$ (步驟見»),並可得 $$$dx = 2 du$$$

該積分變為

$$- \frac{3 {\color{red}{\int{\sin{\left(\frac{x}{2} - 1 \right)} d x}}}}{2} = - \frac{3 {\color{red}{\int{2 \sin{\left(u \right)} d u}}}}{2}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=2$$$$$$f{\left(u \right)} = \sin{\left(u \right)}$$$

$$- \frac{3 {\color{red}{\int{2 \sin{\left(u \right)} d u}}}}{2} = - \frac{3 {\color{red}{\left(2 \int{\sin{\left(u \right)} d u}\right)}}}{2}$$

正弦函數的積分為 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$

$$- 3 {\color{red}{\int{\sin{\left(u \right)} d u}}} = - 3 {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$

回顧一下 $$$u=\frac{x}{2} - 1$$$

$$3 \cos{\left({\color{red}{u}} \right)} = 3 \cos{\left({\color{red}{\left(\frac{x}{2} - 1\right)}} \right)}$$

因此,

$$\int{\left(- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}\right)d x} = 3 \cos{\left(\frac{x}{2} - 1 \right)}$$

加上積分常數:

$$\int{\left(- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}\right)d x} = 3 \cos{\left(\frac{x}{2} - 1 \right)}+C$$

答案

$$$\int \left(- \frac{3 \sin{\left(\frac{x}{2} - 1 \right)}}{2}\right)\, dx = 3 \cos{\left(\frac{x}{2} - 1 \right)} + C$$$A


Please try a new game Rotatly