$$$\sinh^{2}{\left(x \right)}$$$ 的積分

此計算器將求出 $$$\sinh^{2}{\left(x \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \sinh^{2}{\left(x \right)}\, dx$$$

解答

套用降冪公式 $$$\sinh^{2}{\left(\alpha \right)} = \frac{\cosh{\left(2 \alpha \right)}}{2} - \frac{1}{2}$$$,令 $$$\alpha=x$$$:

$${\color{red}{\int{\sinh^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\left(\frac{\cosh{\left(2 x \right)}}{2} - \frac{1}{2}\right)d x}}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \cosh{\left(2 x \right)} - 1$$$

$${\color{red}{\int{\left(\frac{\cosh{\left(2 x \right)}}{2} - \frac{1}{2}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(\cosh{\left(2 x \right)} - 1\right)d x}}{2}\right)}}$$

逐項積分:

$$\frac{{\color{red}{\int{\left(\cosh{\left(2 x \right)} - 1\right)d x}}}}{2} = \frac{{\color{red}{\left(- \int{1 d x} + \int{\cosh{\left(2 x \right)} d x}\right)}}}{2}$$

配合 $$$c=1$$$,應用常數法則 $$$\int c\, dx = c x$$$

$$\frac{\int{\cosh{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{1 d x}}}}{2} = \frac{\int{\cosh{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{x}}}{2}$$

$$$u=2 x$$$

$$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{2}$$$

該積分變為

$$- \frac{x}{2} + \frac{{\color{red}{\int{\cosh{\left(2 x \right)} d x}}}}{2} = - \frac{x}{2} + \frac{{\color{red}{\int{\frac{\cosh{\left(u \right)}}{2} d u}}}}{2}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \cosh{\left(u \right)}$$$

$$- \frac{x}{2} + \frac{{\color{red}{\int{\frac{\cosh{\left(u \right)}}{2} d u}}}}{2} = - \frac{x}{2} + \frac{{\color{red}{\left(\frac{\int{\cosh{\left(u \right)} d u}}{2}\right)}}}{2}$$

雙曲餘弦的積分為 $$$\int{\cosh{\left(u \right)} d u} = \sinh{\left(u \right)}$$$

$$- \frac{x}{2} + \frac{{\color{red}{\int{\cosh{\left(u \right)} d u}}}}{4} = - \frac{x}{2} + \frac{{\color{red}{\sinh{\left(u \right)}}}}{4}$$

回顧一下 $$$u=2 x$$$

$$- \frac{x}{2} + \frac{\sinh{\left({\color{red}{u}} \right)}}{4} = - \frac{x}{2} + \frac{\sinh{\left({\color{red}{\left(2 x\right)}} \right)}}{4}$$

因此,

$$\int{\sinh^{2}{\left(x \right)} d x} = - \frac{x}{2} + \frac{\sinh{\left(2 x \right)}}{4}$$

加上積分常數:

$$\int{\sinh^{2}{\left(x \right)} d x} = - \frac{x}{2} + \frac{\sinh{\left(2 x \right)}}{4}+C$$

答案

$$$\int \sinh^{2}{\left(x \right)}\, dx = \left(- \frac{x}{2} + \frac{\sinh{\left(2 x \right)}}{4}\right) + C$$$A


Please try a new game Rotatly