$$$1 - \frac{1}{x}$$$ 的積分
您的輸入
求$$$\int \left(1 - \frac{1}{x}\right)\, dx$$$。
解答
逐項積分:
$${\color{red}{\int{\left(1 - \frac{1}{x}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{\frac{1}{x} d x}\right)}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, dx = c x$$$:
$$- \int{\frac{1}{x} d x} + {\color{red}{\int{1 d x}}} = - \int{\frac{1}{x} d x} + {\color{red}{x}}$$
$$$\frac{1}{x}$$$ 的積分是 $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$x - {\color{red}{\int{\frac{1}{x} d x}}} = x - {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
因此,
$$\int{\left(1 - \frac{1}{x}\right)d x} = x - \ln{\left(\left|{x}\right| \right)}$$
加上積分常數:
$$\int{\left(1 - \frac{1}{x}\right)d x} = x - \ln{\left(\left|{x}\right| \right)}+C$$
答案
$$$\int \left(1 - \frac{1}{x}\right)\, dx = \left(x - \ln\left(\left|{x}\right|\right)\right) + C$$$A