$$$\frac{1}{6 x^{7}}$$$ 的積分
您的輸入
求$$$\int \frac{1}{6 x^{7}}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{6}$$$ 與 $$$f{\left(x \right)} = \frac{1}{x^{7}}$$$:
$${\color{red}{\int{\frac{1}{6 x^{7}} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{x^{7}} d x}}{6}\right)}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-7$$$:
$$\frac{{\color{red}{\int{\frac{1}{x^{7}} d x}}}}{6}=\frac{{\color{red}{\int{x^{-7} d x}}}}{6}=\frac{{\color{red}{\frac{x^{-7 + 1}}{-7 + 1}}}}{6}=\frac{{\color{red}{\left(- \frac{x^{-6}}{6}\right)}}}{6}=\frac{{\color{red}{\left(- \frac{1}{6 x^{6}}\right)}}}{6}$$
因此,
$$\int{\frac{1}{6 x^{7}} d x} = - \frac{1}{36 x^{6}}$$
加上積分常數:
$$\int{\frac{1}{6 x^{7}} d x} = - \frac{1}{36 x^{6}}+C$$
答案
$$$\int \frac{1}{6 x^{7}}\, dx = - \frac{1}{36 x^{6}} + C$$$A