$$$2^{- \frac{t}{5}}$$$ 的積分

此計算器將求出 $$$2^{- \frac{t}{5}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int 2^{- \frac{t}{5}}\, dt$$$

解答

已將輸入重寫為:$$$\int{2^{- \frac{t}{5}} d t}=\int{\left(\frac{2^{\frac{4}{5}}}{2}\right)^{t} d t}$$$

Apply the exponential rule $$$\int{a^{t} d t} = \frac{a^{t}}{\ln{\left(a \right)}}$$$ with $$$a=\frac{2^{\frac{4}{5}}}{2}$$$:

$${\color{red}{\int{\left(\frac{2^{\frac{4}{5}}}{2}\right)^{t} d t}}} = {\color{red}{\frac{\left(\frac{2^{\frac{4}{5}}}{2}\right)^{t}}{\ln{\left(\frac{2^{\frac{4}{5}}}{2} \right)}}}}$$

因此,

$$\int{\left(\frac{2^{\frac{4}{5}}}{2}\right)^{t} d t} = \frac{\left(\frac{2^{\frac{4}{5}}}{2}\right)^{t}}{\ln{\left(\frac{2^{\frac{4}{5}}}{2} \right)}}$$

化簡:

$$\int{\left(\frac{2^{\frac{4}{5}}}{2}\right)^{t} d t} = - \frac{5 \cdot 2^{- \frac{t}{5}}}{\ln{\left(2 \right)}}$$

加上積分常數:

$$\int{\left(\frac{2^{\frac{4}{5}}}{2}\right)^{t} d t} = - \frac{5 \cdot 2^{- \frac{t}{5}}}{\ln{\left(2 \right)}}+C$$

答案

$$$\int 2^{- \frac{t}{5}}\, dt = - \frac{5 \cdot 2^{- \frac{t}{5}}}{\ln\left(2\right)} + C$$$A


Please try a new game Rotatly