$$$\frac{3}{y^{2}}$$$ 的積分

此計算器將求出 $$$\frac{3}{y^{2}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{3}{y^{2}}\, dy$$$

解答

套用常數倍法則 $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$,使用 $$$c=3$$$$$$f{\left(y \right)} = \frac{1}{y^{2}}$$$

$${\color{red}{\int{\frac{3}{y^{2}} d y}}} = {\color{red}{\left(3 \int{\frac{1}{y^{2}} d y}\right)}}$$

套用冪次法則 $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-2$$$

$$3 {\color{red}{\int{\frac{1}{y^{2}} d y}}}=3 {\color{red}{\int{y^{-2} d y}}}=3 {\color{red}{\frac{y^{-2 + 1}}{-2 + 1}}}=3 {\color{red}{\left(- y^{-1}\right)}}=3 {\color{red}{\left(- \frac{1}{y}\right)}}$$

因此,

$$\int{\frac{3}{y^{2}} d y} = - \frac{3}{y}$$

加上積分常數:

$$\int{\frac{3}{y^{2}} d y} = - \frac{3}{y}+C$$

答案

$$$\int \frac{3}{y^{2}}\, dy = - \frac{3}{y} + C$$$A


Please try a new game Rotatly