$$$\frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}}$$$ 的積分
您的輸入
求$$$\int \frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}}\, dx$$$。
解答
令 $$$u=\frac{x}{3}$$$。
則 $$$du=\left(\frac{x}{3}\right)^{\prime }dx = \frac{dx}{3}$$$ (步驟見»),並可得 $$$dx = 3 du$$$。
該積分可改寫為
$${\color{red}{\int{\frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}} d x}}} = {\color{red}{\int{\frac{3}{\sin^{2}{\left(u \right)}} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=3$$$ 與 $$$f{\left(u \right)} = \frac{1}{\sin^{2}{\left(u \right)}}$$$:
$${\color{red}{\int{\frac{3}{\sin^{2}{\left(u \right)}} d u}}} = {\color{red}{\left(3 \int{\frac{1}{\sin^{2}{\left(u \right)}} d u}\right)}}$$
將被積函數改寫為以餘割函數表示:
$$3 {\color{red}{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}} = 3 {\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}$$
$$$\csc^{2}{\left(u \right)}$$$ 的積分是 $$$\int{\csc^{2}{\left(u \right)} d u} = - \cot{\left(u \right)}$$$:
$$3 {\color{red}{\int{\csc^{2}{\left(u \right)} d u}}} = 3 {\color{red}{\left(- \cot{\left(u \right)}\right)}}$$
回顧一下 $$$u=\frac{x}{3}$$$:
$$- 3 \cot{\left({\color{red}{u}} \right)} = - 3 \cot{\left({\color{red}{\left(\frac{x}{3}\right)}} \right)}$$
因此,
$$\int{\frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}} d x} = - 3 \cot{\left(\frac{x}{3} \right)}$$
加上積分常數:
$$\int{\frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}} d x} = - 3 \cot{\left(\frac{x}{3} \right)}+C$$
答案
$$$\int \frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}}\, dx = - 3 \cot{\left(\frac{x}{3} \right)} + C$$$A