$$$\frac{1}{\cos^{4}{\left(a \right)}}$$$ 的積分

此計算器將求出 $$$\frac{1}{\cos^{4}{\left(a \right)}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{1}{\cos^{4}{\left(a \right)}}\, da$$$

解答

將被積函數以正割表示:

$${\color{red}{\int{\frac{1}{\cos^{4}{\left(a \right)}} d a}}} = {\color{red}{\int{\sec^{4}{\left(a \right)} d a}}}$$

提出兩個正割,並使用公式 $$$\sec^2\left( \alpha \right)=\tan^2\left( \alpha \right) + 1$$$(其中 $$$\alpha=a$$$),將其餘全部用正切表示:

$${\color{red}{\int{\sec^{4}{\left(a \right)} d a}}} = {\color{red}{\int{\left(\tan^{2}{\left(a \right)} + 1\right) \sec^{2}{\left(a \right)} d a}}}$$

$$$u=\tan{\left(a \right)}$$$

$$$du=\left(\tan{\left(a \right)}\right)^{\prime }da = \sec^{2}{\left(a \right)} da$$$ (步驟見»),並可得 $$$\sec^{2}{\left(a \right)} da = du$$$

因此,

$${\color{red}{\int{\left(\tan^{2}{\left(a \right)} + 1\right) \sec^{2}{\left(a \right)} d a}}} = {\color{red}{\int{\left(u^{2} + 1\right)d u}}}$$

逐項積分:

$${\color{red}{\int{\left(u^{2} + 1\right)d u}}} = {\color{red}{\left(\int{1 d u} + \int{u^{2} d u}\right)}}$$

配合 $$$c=1$$$,應用常數法則 $$$\int c\, du = c u$$$

$$\int{u^{2} d u} + {\color{red}{\int{1 d u}}} = \int{u^{2} d u} + {\color{red}{u}}$$

套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$

$$u + {\color{red}{\int{u^{2} d u}}}=u + {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=u + {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$

回顧一下 $$$u=\tan{\left(a \right)}$$$

$${\color{red}{u}} + \frac{{\color{red}{u}}^{3}}{3} = {\color{red}{\tan{\left(a \right)}}} + \frac{{\color{red}{\tan{\left(a \right)}}}^{3}}{3}$$

因此,

$$\int{\frac{1}{\cos^{4}{\left(a \right)}} d a} = \frac{\tan^{3}{\left(a \right)}}{3} + \tan{\left(a \right)}$$

加上積分常數:

$$\int{\frac{1}{\cos^{4}{\left(a \right)}} d a} = \frac{\tan^{3}{\left(a \right)}}{3} + \tan{\left(a \right)}+C$$

答案

$$$\int \frac{1}{\cos^{4}{\left(a \right)}}\, da = \left(\frac{\tan^{3}{\left(a \right)}}{3} + \tan{\left(a \right)}\right) + C$$$A


Please try a new game Rotatly