$$$\frac{1}{1 - \sin{\left(2 x \right)}}$$$ 的積分

此計算器將求出 $$$\frac{1}{1 - \sin{\left(2 x \right)}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{1}{1 - \sin{\left(2 x \right)}}\, dx$$$

解答

$$$u=2 x$$$

$$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{2}$$$

因此,

$${\color{red}{\int{\frac{1}{1 - \sin{\left(2 x \right)}} d x}}} = {\color{red}{\int{\left(- \frac{1}{2 \left(\sin{\left(u \right)} - 1\right)}\right)d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=- \frac{1}{2}$$$$$$f{\left(u \right)} = \frac{1}{\sin{\left(u \right)} - 1}$$$

$${\color{red}{\int{\left(- \frac{1}{2 \left(\sin{\left(u \right)} - 1\right)}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{1}{\sin{\left(u \right)} - 1} d u}}{2}\right)}}$$

$$$1$$$ 重寫為 $$$\sin^2\left(\frac{ u }{2}\right)+\cos^2\left(\frac{ u }{2}\right)$$$,並應用正弦的二倍角公式 $$$\sin\left( u \right)=2\sin\left(\frac{ u }{2}\right)\cos\left(\frac{ u }{2}\right)$$$:

$$- \frac{{\color{red}{\int{\frac{1}{\sin{\left(u \right)} - 1} d u}}}}{2} = - \frac{{\color{red}{\int{\frac{1}{- \sin^{2}{\left(\frac{u}{2} \right)} + 2 \sin{\left(\frac{u}{2} \right)} \cos{\left(\frac{u}{2} \right)} - \cos^{2}{\left(\frac{u}{2} \right)}} d u}}}}{2}$$

配方法(步驟見»):

$$- \frac{{\color{red}{\int{\frac{1}{- \sin^{2}{\left(\frac{u}{2} \right)} + 2 \sin{\left(\frac{u}{2} \right)} \cos{\left(\frac{u}{2} \right)} - \cos^{2}{\left(\frac{u}{2} \right)}} d u}}}}{2} = - \frac{{\color{red}{\int{\left(- \frac{1}{\left(\sin{\left(\frac{u}{2} \right)} - \cos{\left(\frac{u}{2} \right)}\right)^{2}}\right)d u}}}}{2}$$

將分子與分母同時乘以 $$$\sec^2\left(\frac{ u }{2}\right)$$$:

$$- \frac{{\color{red}{\int{\left(- \frac{1}{\left(\sin{\left(\frac{u}{2} \right)} - \cos{\left(\frac{u}{2} \right)}\right)^{2}}\right)d u}}}}{2} = - \frac{{\color{red}{\int{\left(- \frac{\sec^{2}{\left(\frac{u}{2} \right)}}{\left(\tan{\left(\frac{u}{2} \right)} - 1\right)^{2}}\right)d u}}}}{2}$$

$$$v=\tan{\left(\frac{u}{2} \right)} - 1$$$

$$$dv=\left(\tan{\left(\frac{u}{2} \right)} - 1\right)^{\prime }du = \frac{\sec^{2}{\left(\frac{u}{2} \right)}}{2} du$$$ (步驟見»),並可得 $$$\sec^{2}{\left(\frac{u}{2} \right)} du = 2 dv$$$

因此,

$$- \frac{{\color{red}{\int{\left(- \frac{\sec^{2}{\left(\frac{u}{2} \right)}}{\left(\tan{\left(\frac{u}{2} \right)} - 1\right)^{2}}\right)d u}}}}{2} = - \frac{{\color{red}{\int{\left(- \frac{2}{v^{2}}\right)d v}}}}{2}$$

套用常數倍法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$,使用 $$$c=-2$$$$$$f{\left(v \right)} = \frac{1}{v^{2}}$$$

$$- \frac{{\color{red}{\int{\left(- \frac{2}{v^{2}}\right)d v}}}}{2} = - \frac{{\color{red}{\left(- 2 \int{\frac{1}{v^{2}} d v}\right)}}}{2}$$

套用冪次法則 $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-2$$$

$${\color{red}{\int{\frac{1}{v^{2}} d v}}}={\color{red}{\int{v^{-2} d v}}}={\color{red}{\frac{v^{-2 + 1}}{-2 + 1}}}={\color{red}{\left(- v^{-1}\right)}}={\color{red}{\left(- \frac{1}{v}\right)}}$$

回顧一下 $$$v=\tan{\left(\frac{u}{2} \right)} - 1$$$

$$- {\color{red}{v}}^{-1} = - {\color{red}{\left(\tan{\left(\frac{u}{2} \right)} - 1\right)}}^{-1}$$

回顧一下 $$$u=2 x$$$

$$- \left(-1 + \tan{\left(\frac{{\color{red}{u}}}{2} \right)}\right)^{-1} = - \left(-1 + \tan{\left(\frac{{\color{red}{\left(2 x\right)}}}{2} \right)}\right)^{-1}$$

因此,

$$\int{\frac{1}{1 - \sin{\left(2 x \right)}} d x} = - \frac{1}{\tan{\left(x \right)} - 1}$$

加上積分常數:

$$\int{\frac{1}{1 - \sin{\left(2 x \right)}} d x} = - \frac{1}{\tan{\left(x \right)} - 1}+C$$

答案

$$$\int \frac{1}{1 - \sin{\left(2 x \right)}}\, dx = - \frac{1}{\tan{\left(x \right)} - 1} + C$$$A


Please try a new game Rotatly