$$$\frac{1}{1 - \cos{\left(x \right)}}$$$ 的積分
您的輸入
求$$$\int \frac{1}{1 - \cos{\left(x \right)}}\, dx$$$。
解答
使用倍角公式 $$$\cos\left(x\right)=1-2\sin^2\left(\frac{x}{2}\right)$$$ 將餘弦改寫並化簡:
$${\color{red}{\int{\frac{1}{1 - \cos{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{2 \sin^{2}{\left(\frac{x}{2} \right)}} d x}}}$$
令 $$$u=\frac{x}{2}$$$。
則 $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (步驟見»),並可得 $$$dx = 2 du$$$。
該積分變為
$${\color{red}{\int{\frac{1}{2 \sin^{2}{\left(\frac{x}{2} \right)}} d x}}} = {\color{red}{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}}$$
將被積函數改寫為以餘割函數表示:
$${\color{red}{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}} = {\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}$$
$$$\csc^{2}{\left(u \right)}$$$ 的積分是 $$$\int{\csc^{2}{\left(u \right)} d u} = - \cot{\left(u \right)}$$$:
$${\color{red}{\int{\csc^{2}{\left(u \right)} d u}}} = {\color{red}{\left(- \cot{\left(u \right)}\right)}}$$
回顧一下 $$$u=\frac{x}{2}$$$:
$$- \cot{\left({\color{red}{u}} \right)} = - \cot{\left({\color{red}{\left(\frac{x}{2}\right)}} \right)}$$
因此,
$$\int{\frac{1}{1 - \cos{\left(x \right)}} d x} = - \cot{\left(\frac{x}{2} \right)}$$
加上積分常數:
$$\int{\frac{1}{1 - \cos{\left(x \right)}} d x} = - \cot{\left(\frac{x}{2} \right)}+C$$
答案
$$$\int \frac{1}{1 - \cos{\left(x \right)}}\, dx = - \cot{\left(\frac{x}{2} \right)} + C$$$A