$$$\frac{1}{1 - \cos{\left(2 x \right)}}$$$ 的積分

此計算器將求出 $$$\frac{1}{1 - \cos{\left(2 x \right)}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{1}{1 - \cos{\left(2 x \right)}}\, dx$$$

解答

$$$u=2 x$$$

$$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{2}$$$

因此,

$${\color{red}{\int{\frac{1}{1 - \cos{\left(2 x \right)}} d x}}} = {\color{red}{\int{\left(- \frac{1}{2 \left(\cos{\left(u \right)} - 1\right)}\right)d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=- \frac{1}{2}$$$$$$f{\left(u \right)} = \frac{1}{\cos{\left(u \right)} - 1}$$$

$${\color{red}{\int{\left(- \frac{1}{2 \left(\cos{\left(u \right)} - 1\right)}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{1}{\cos{\left(u \right)} - 1} d u}}{2}\right)}}$$

使用倍角公式 $$$\cos\left( u \right)=1-2\sin^2\left(\frac{ u }{2}\right)$$$ 將餘弦改寫並化簡:

$$- \frac{{\color{red}{\int{\frac{1}{\cos{\left(u \right)} - 1} d u}}}}{2} = - \frac{{\color{red}{\int{\left(- \frac{1}{2 \sin^{2}{\left(\frac{u}{2} \right)}}\right)d u}}}}{2}$$

$$$v=\frac{u}{2}$$$

$$$dv=\left(\frac{u}{2}\right)^{\prime }du = \frac{du}{2}$$$ (步驟見»),並可得 $$$du = 2 dv$$$

因此,

$$- \frac{{\color{red}{\int{\left(- \frac{1}{2 \sin^{2}{\left(\frac{u}{2} \right)}}\right)d u}}}}{2} = - \frac{{\color{red}{\int{\left(- \frac{1}{\sin^{2}{\left(v \right)}}\right)d v}}}}{2}$$

套用常數倍法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$,使用 $$$c=-1$$$$$$f{\left(v \right)} = \frac{1}{\sin^{2}{\left(v \right)}}$$$

$$- \frac{{\color{red}{\int{\left(- \frac{1}{\sin^{2}{\left(v \right)}}\right)d v}}}}{2} = - \frac{{\color{red}{\left(- \int{\frac{1}{\sin^{2}{\left(v \right)}} d v}\right)}}}{2}$$

將被積函數改寫為以餘割函數表示:

$$\frac{{\color{red}{\int{\frac{1}{\sin^{2}{\left(v \right)}} d v}}}}{2} = \frac{{\color{red}{\int{\csc^{2}{\left(v \right)} d v}}}}{2}$$

$$$\csc^{2}{\left(v \right)}$$$ 的積分是 $$$\int{\csc^{2}{\left(v \right)} d v} = - \cot{\left(v \right)}$$$

$$\frac{{\color{red}{\int{\csc^{2}{\left(v \right)} d v}}}}{2} = \frac{{\color{red}{\left(- \cot{\left(v \right)}\right)}}}{2}$$

回顧一下 $$$v=\frac{u}{2}$$$

$$- \frac{\cot{\left({\color{red}{v}} \right)}}{2} = - \frac{\cot{\left({\color{red}{\left(\frac{u}{2}\right)}} \right)}}{2}$$

回顧一下 $$$u=2 x$$$

$$- \frac{\cot{\left(\frac{{\color{red}{u}}}{2} \right)}}{2} = - \frac{\cot{\left(\frac{{\color{red}{\left(2 x\right)}}}{2} \right)}}{2}$$

因此,

$$\int{\frac{1}{1 - \cos{\left(2 x \right)}} d x} = - \frac{\cot{\left(x \right)}}{2}$$

加上積分常數:

$$\int{\frac{1}{1 - \cos{\left(2 x \right)}} d x} = - \frac{\cot{\left(x \right)}}{2}+C$$

答案

$$$\int \frac{1}{1 - \cos{\left(2 x \right)}}\, dx = - \frac{\cot{\left(x \right)}}{2} + C$$$A


Please try a new game Rotatly