$$$\frac{1}{y \left(1 - y\right)}$$$ 的積分
您的輸入
求$$$\int \frac{1}{y \left(1 - y\right)}\, dy$$$。
解答
進行部分分式分解(步驟可見 »):
$${\color{red}{\int{\frac{1}{y \left(1 - y\right)} d y}}} = {\color{red}{\int{\left(\frac{1}{1 - y} + \frac{1}{y}\right)d y}}}$$
逐項積分:
$${\color{red}{\int{\left(\frac{1}{1 - y} + \frac{1}{y}\right)d y}}} = {\color{red}{\left(\int{\frac{1}{y} d y} + \int{\frac{1}{1 - y} d y}\right)}}$$
$$$\frac{1}{y}$$$ 的積分是 $$$\int{\frac{1}{y} d y} = \ln{\left(\left|{y}\right| \right)}$$$:
$$\int{\frac{1}{1 - y} d y} + {\color{red}{\int{\frac{1}{y} d y}}} = \int{\frac{1}{1 - y} d y} + {\color{red}{\ln{\left(\left|{y}\right| \right)}}}$$
令 $$$u=1 - y$$$。
則 $$$du=\left(1 - y\right)^{\prime }dy = - dy$$$ (步驟見»),並可得 $$$dy = - du$$$。
該積分可改寫為
$$\ln{\left(\left|{y}\right| \right)} + {\color{red}{\int{\frac{1}{1 - y} d y}}} = \ln{\left(\left|{y}\right| \right)} + {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=-1$$$ 與 $$$f{\left(u \right)} = \frac{1}{u}$$$:
$$\ln{\left(\left|{y}\right| \right)} + {\color{red}{\int{\left(- \frac{1}{u}\right)d u}}} = \ln{\left(\left|{y}\right| \right)} + {\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}$$
$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\ln{\left(\left|{y}\right| \right)} - {\color{red}{\int{\frac{1}{u} d u}}} = \ln{\left(\left|{y}\right| \right)} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回顧一下 $$$u=1 - y$$$:
$$\ln{\left(\left|{y}\right| \right)} - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{y}\right| \right)} - \ln{\left(\left|{{\color{red}{\left(1 - y\right)}}}\right| \right)}$$
因此,
$$\int{\frac{1}{y \left(1 - y\right)} d y} = \ln{\left(\left|{y}\right| \right)} - \ln{\left(\left|{y - 1}\right| \right)}$$
加上積分常數:
$$\int{\frac{1}{y \left(1 - y\right)} d y} = \ln{\left(\left|{y}\right| \right)} - \ln{\left(\left|{y - 1}\right| \right)}+C$$
答案
$$$\int \frac{1}{y \left(1 - y\right)}\, dy = \left(\ln\left(\left|{y}\right|\right) - \ln\left(\left|{y - 1}\right|\right)\right) + C$$$A