$$$- 8 \cos{\left(t \right)} - 1$$$ 的積分
您的輸入
求$$$\int \left(- 8 \cos{\left(t \right)} - 1\right)\, dt$$$。
解答
逐項積分:
$${\color{red}{\int{\left(- 8 \cos{\left(t \right)} - 1\right)d t}}} = {\color{red}{\left(- \int{1 d t} - \int{8 \cos{\left(t \right)} d t}\right)}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, dt = c t$$$:
$$- \int{8 \cos{\left(t \right)} d t} - {\color{red}{\int{1 d t}}} = - \int{8 \cos{\left(t \right)} d t} - {\color{red}{t}}$$
套用常數倍法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$,使用 $$$c=8$$$ 與 $$$f{\left(t \right)} = \cos{\left(t \right)}$$$:
$$- t - {\color{red}{\int{8 \cos{\left(t \right)} d t}}} = - t - {\color{red}{\left(8 \int{\cos{\left(t \right)} d t}\right)}}$$
餘弦函數的積分為 $$$\int{\cos{\left(t \right)} d t} = \sin{\left(t \right)}$$$:
$$- t - 8 {\color{red}{\int{\cos{\left(t \right)} d t}}} = - t - 8 {\color{red}{\sin{\left(t \right)}}}$$
因此,
$$\int{\left(- 8 \cos{\left(t \right)} - 1\right)d t} = - t - 8 \sin{\left(t \right)}$$
加上積分常數:
$$\int{\left(- 8 \cos{\left(t \right)} - 1\right)d t} = - t - 8 \sin{\left(t \right)}+C$$
答案
$$$\int \left(- 8 \cos{\left(t \right)} - 1\right)\, dt = \left(- t - 8 \sin{\left(t \right)}\right) + C$$$A