$$$- \frac{\cos{\left(93 x \right)}}{3}$$$ 的積分
您的輸入
求$$$\int \left(- \frac{\cos{\left(93 x \right)}}{3}\right)\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=- \frac{1}{3}$$$ 與 $$$f{\left(x \right)} = \cos{\left(93 x \right)}$$$:
$${\color{red}{\int{\left(- \frac{\cos{\left(93 x \right)}}{3}\right)d x}}} = {\color{red}{\left(- \frac{\int{\cos{\left(93 x \right)} d x}}{3}\right)}}$$
令 $$$u=93 x$$$。
則 $$$du=\left(93 x\right)^{\prime }dx = 93 dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{93}$$$。
所以,
$$- \frac{{\color{red}{\int{\cos{\left(93 x \right)} d x}}}}{3} = - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{93} d u}}}}{3}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{93}$$$ 與 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$- \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{93} d u}}}}{3} = - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{93}\right)}}}{3}$$
餘弦函數的積分為 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$- \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{279} = - \frac{{\color{red}{\sin{\left(u \right)}}}}{279}$$
回顧一下 $$$u=93 x$$$:
$$- \frac{\sin{\left({\color{red}{u}} \right)}}{279} = - \frac{\sin{\left({\color{red}{\left(93 x\right)}} \right)}}{279}$$
因此,
$$\int{\left(- \frac{\cos{\left(93 x \right)}}{3}\right)d x} = - \frac{\sin{\left(93 x \right)}}{279}$$
加上積分常數:
$$\int{\left(- \frac{\cos{\left(93 x \right)}}{3}\right)d x} = - \frac{\sin{\left(93 x \right)}}{279}+C$$
答案
$$$\int \left(- \frac{\cos{\left(93 x \right)}}{3}\right)\, dx = - \frac{\sin{\left(93 x \right)}}{279} + C$$$A