$$$- \frac{1}{4 x^{3}}$$$ 的積分
您的輸入
求$$$\int \left(- \frac{1}{4 x^{3}}\right)\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=- \frac{1}{4}$$$ 與 $$$f{\left(x \right)} = \frac{1}{x^{3}}$$$:
$${\color{red}{\int{\left(- \frac{1}{4 x^{3}}\right)d x}}} = {\color{red}{\left(- \frac{\int{\frac{1}{x^{3}} d x}}{4}\right)}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-3$$$:
$$- \frac{{\color{red}{\int{\frac{1}{x^{3}} d x}}}}{4}=- \frac{{\color{red}{\int{x^{-3} d x}}}}{4}=- \frac{{\color{red}{\frac{x^{-3 + 1}}{-3 + 1}}}}{4}=- \frac{{\color{red}{\left(- \frac{x^{-2}}{2}\right)}}}{4}=- \frac{{\color{red}{\left(- \frac{1}{2 x^{2}}\right)}}}{4}$$
因此,
$$\int{\left(- \frac{1}{4 x^{3}}\right)d x} = \frac{1}{8 x^{2}}$$
加上積分常數:
$$\int{\left(- \frac{1}{4 x^{3}}\right)d x} = \frac{1}{8 x^{2}}+C$$
答案
$$$\int \left(- \frac{1}{4 x^{3}}\right)\, dx = \frac{1}{8 x^{2}} + C$$$A