$$$- \frac{1}{\sqrt{16 - 4 x^{2}}}$$$ 的積分

此計算器將求出 $$$- \frac{1}{\sqrt{16 - 4 x^{2}}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \left(- \frac{1}{\sqrt{16 - 4 x^{2}}}\right)\, dx$$$

解答

簡化被積函數:

$${\color{red}{\int{\left(- \frac{1}{\sqrt{16 - 4 x^{2}}}\right)d x}}} = {\color{red}{\int{\left(- \frac{1}{2 \sqrt{4 - x^{2}}}\right)d x}}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=- \frac{1}{2}$$$$$$f{\left(x \right)} = \frac{1}{\sqrt{4 - x^{2}}}$$$

$${\color{red}{\int{\left(- \frac{1}{2 \sqrt{4 - x^{2}}}\right)d x}}} = {\color{red}{\left(- \frac{\int{\frac{1}{\sqrt{4 - x^{2}}} d x}}{2}\right)}}$$

$$$x=2 \sin{\left(u \right)}$$$

$$$dx=\left(2 \sin{\left(u \right)}\right)^{\prime }du = 2 \cos{\left(u \right)} du$$$(步驟見»)。

此外,由此可得 $$$u=\operatorname{asin}{\left(\frac{x}{2} \right)}$$$

所以,

$$$\frac{1}{\sqrt{4 - x^{2}}} = \frac{1}{\sqrt{4 - 4 \sin^{2}{\left( u \right)}}}$$$

使用恆等式 $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$

$$$\frac{1}{\sqrt{4 - 4 \sin^{2}{\left( u \right)}}}=\frac{1}{2 \sqrt{1 - \sin^{2}{\left( u \right)}}}=\frac{1}{2 \sqrt{\cos^{2}{\left( u \right)}}}$$$

假設 $$$\cos{\left( u \right)} \ge 0$$$,可得如下:

$$$\frac{1}{2 \sqrt{\cos^{2}{\left( u \right)}}} = \frac{1}{2 \cos{\left( u \right)}}$$$

積分可以改寫為

$$- \frac{{\color{red}{\int{\frac{1}{\sqrt{4 - x^{2}}} d x}}}}{2} = - \frac{{\color{red}{\int{1 d u}}}}{2}$$

配合 $$$c=1$$$,應用常數法則 $$$\int c\, du = c u$$$

$$- \frac{{\color{red}{\int{1 d u}}}}{2} = - \frac{{\color{red}{u}}}{2}$$

回顧一下 $$$u=\operatorname{asin}{\left(\frac{x}{2} \right)}$$$

$$- \frac{{\color{red}{u}}}{2} = - \frac{{\color{red}{\operatorname{asin}{\left(\frac{x}{2} \right)}}}}{2}$$

因此,

$$\int{\left(- \frac{1}{\sqrt{16 - 4 x^{2}}}\right)d x} = - \frac{\operatorname{asin}{\left(\frac{x}{2} \right)}}{2}$$

加上積分常數:

$$\int{\left(- \frac{1}{\sqrt{16 - 4 x^{2}}}\right)d x} = - \frac{\operatorname{asin}{\left(\frac{x}{2} \right)}}{2}+C$$

答案

$$$\int \left(- \frac{1}{\sqrt{16 - 4 x^{2}}}\right)\, dx = - \frac{\operatorname{asin}{\left(\frac{x}{2} \right)}}{2} + C$$$A


Please try a new game Rotatly