$$$b \sin{\left(x \right)}$$$ 對 $$$x$$$ 的積分
您的輸入
求$$$\int b \sin{\left(x \right)}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=b$$$ 與 $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:
$${\color{red}{\int{b \sin{\left(x \right)} d x}}} = {\color{red}{b \int{\sin{\left(x \right)} d x}}}$$
正弦函數的積分為 $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$b {\color{red}{\int{\sin{\left(x \right)} d x}}} = b {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
因此,
$$\int{b \sin{\left(x \right)} d x} = - b \cos{\left(x \right)}$$
加上積分常數:
$$\int{b \sin{\left(x \right)} d x} = - b \cos{\left(x \right)}+C$$
答案
$$$\int b \sin{\left(x \right)}\, dx = - b \cos{\left(x \right)} + C$$$A
Please try a new game Rotatly