$$$e^{\frac{x}{c}}$$$ 對 $$$x$$$ 的積分
您的輸入
求$$$\int e^{\frac{x}{c}}\, dx$$$。
解答
令 $$$u=\frac{x}{c}$$$。
則 $$$du=\left(\frac{x}{c}\right)^{\prime }dx = \frac{dx}{c}$$$ (步驟見»),並可得 $$$dx = c du$$$。
所以,
$${\color{red}{\int{e^{\frac{x}{c}} d x}}} = {\color{red}{\int{c e^{u} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=c$$$ 與 $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{c e^{u} d u}}} = {\color{red}{c \int{e^{u} d u}}}$$
指數函數的積分為 $$$\int{e^{u} d u} = e^{u}$$$:
$$c {\color{red}{\int{e^{u} d u}}} = c {\color{red}{e^{u}}}$$
回顧一下 $$$u=\frac{x}{c}$$$:
$$c e^{{\color{red}{u}}} = c e^{{\color{red}{\frac{x}{c}}}}$$
因此,
$$\int{e^{\frac{x}{c}} d x} = c e^{\frac{x}{c}}$$
加上積分常數:
$$\int{e^{\frac{x}{c}} d x} = c e^{\frac{x}{c}}+C$$
答案
$$$\int e^{\frac{x}{c}}\, dx = c e^{\frac{x}{c}} + C$$$A