$$$\frac{\sqrt{x^{2} - 1}}{x^{2}}$$$ 的積分

此計算器將求出 $$$\frac{\sqrt{x^{2} - 1}}{x^{2}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{\sqrt{x^{2} - 1}}{x^{2}}\, dx$$$

解答

$$$x=\cosh{\left(u \right)}$$$

$$$dx=\left(\cosh{\left(u \right)}\right)^{\prime }du = \sinh{\left(u \right)} du$$$(步驟見»)。

此外,由此可得 $$$u=\operatorname{acosh}{\left(x \right)}$$$

因此,

$$$\frac{\sqrt{x^{2} - 1}}{x^{2}} = \frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh^{2}{\left( u \right)}}$$$

使用恆等式 $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$

$$$\frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh^{2}{\left( u \right)}}=\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh^{2}{\left( u \right)}}$$$

假設 $$$\sinh{\left( u \right)} \ge 0$$$,可得如下:

$$$\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh^{2}{\left( u \right)}} = \frac{\sinh{\left( u \right)}}{\cosh^{2}{\left( u \right)}}$$$

所以,

$${\color{red}{\int{\frac{\sqrt{x^{2} - 1}}{x^{2}} d x}}} = {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh^{2}{\left(u \right)}} d u}}}$$

以雙曲正切表示:

$${\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh^{2}{\left(u \right)}} d u}}} = {\color{red}{\int{\tanh^{2}{\left(u \right)} d u}}}$$

$$$v=\tanh{\left(u \right)}$$$

$$$dv=\left(\tanh{\left(u \right)}\right)^{\prime }du = \operatorname{sech}^{2}{\left(u \right)} du$$$ (步驟見»),並可得 $$$\operatorname{sech}^{2}{\left(u \right)} du = dv$$$

因此,

$${\color{red}{\int{\tanh^{2}{\left(u \right)} d u}}} = {\color{red}{\int{\left(- \frac{v^{2}}{v^{2} - 1}\right)d v}}}$$

套用常數倍法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$,使用 $$$c=-1$$$$$$f{\left(v \right)} = \frac{v^{2}}{v^{2} - 1}$$$

$${\color{red}{\int{\left(- \frac{v^{2}}{v^{2} - 1}\right)d v}}} = {\color{red}{\left(- \int{\frac{v^{2}}{v^{2} - 1} d v}\right)}}$$

重寫並拆分分式:

$$- {\color{red}{\int{\frac{v^{2}}{v^{2} - 1} d v}}} = - {\color{red}{\int{\left(1 + \frac{1}{v^{2} - 1}\right)d v}}}$$

逐項積分:

$$- {\color{red}{\int{\left(1 + \frac{1}{v^{2} - 1}\right)d v}}} = - {\color{red}{\left(\int{1 d v} + \int{\frac{1}{v^{2} - 1} d v}\right)}}$$

配合 $$$c=1$$$,應用常數法則 $$$\int c\, dv = c v$$$

$$- \int{\frac{1}{v^{2} - 1} d v} - {\color{red}{\int{1 d v}}} = - \int{\frac{1}{v^{2} - 1} d v} - {\color{red}{v}}$$

進行部分分式分解(步驟可見 »):

$$- v - {\color{red}{\int{\frac{1}{v^{2} - 1} d v}}} = - v - {\color{red}{\int{\left(- \frac{1}{2 \left(v + 1\right)} + \frac{1}{2 \left(v - 1\right)}\right)d v}}}$$

逐項積分:

$$- v - {\color{red}{\int{\left(- \frac{1}{2 \left(v + 1\right)} + \frac{1}{2 \left(v - 1\right)}\right)d v}}} = - v - {\color{red}{\left(\int{\frac{1}{2 \left(v - 1\right)} d v} - \int{\frac{1}{2 \left(v + 1\right)} d v}\right)}}$$

套用常數倍法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(v \right)} = \frac{1}{v - 1}$$$

$$- v + \int{\frac{1}{2 \left(v + 1\right)} d v} - {\color{red}{\int{\frac{1}{2 \left(v - 1\right)} d v}}} = - v + \int{\frac{1}{2 \left(v + 1\right)} d v} - {\color{red}{\left(\frac{\int{\frac{1}{v - 1} d v}}{2}\right)}}$$

$$$w=v - 1$$$

$$$dw=\left(v - 1\right)^{\prime }dv = 1 dv$$$ (步驟見»),並可得 $$$dv = dw$$$

該積分變為

$$- v + \int{\frac{1}{2 \left(v + 1\right)} d v} - \frac{{\color{red}{\int{\frac{1}{v - 1} d v}}}}{2} = - v + \int{\frac{1}{2 \left(v + 1\right)} d v} - \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{2}$$

$$$\frac{1}{w}$$$ 的積分是 $$$\int{\frac{1}{w} d w} = \ln{\left(\left|{w}\right| \right)}$$$

$$- v + \int{\frac{1}{2 \left(v + 1\right)} d v} - \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{2} = - v + \int{\frac{1}{2 \left(v + 1\right)} d v} - \frac{{\color{red}{\ln{\left(\left|{w}\right| \right)}}}}{2}$$

回顧一下 $$$w=v - 1$$$

$$- v - \frac{\ln{\left(\left|{{\color{red}{w}}}\right| \right)}}{2} + \int{\frac{1}{2 \left(v + 1\right)} d v} = - v - \frac{\ln{\left(\left|{{\color{red}{\left(v - 1\right)}}}\right| \right)}}{2} + \int{\frac{1}{2 \left(v + 1\right)} d v}$$

套用常數倍法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(v \right)} = \frac{1}{v + 1}$$$

$$- v - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + {\color{red}{\int{\frac{1}{2 \left(v + 1\right)} d v}}} = - v - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + {\color{red}{\left(\frac{\int{\frac{1}{v + 1} d v}}{2}\right)}}$$

$$$w=v + 1$$$

$$$dw=\left(v + 1\right)^{\prime }dv = 1 dv$$$ (步驟見»),並可得 $$$dv = dw$$$

因此,

$$- v - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{v + 1} d v}}}}{2} = - v - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{2}$$

$$$\frac{1}{w}$$$ 的積分是 $$$\int{\frac{1}{w} d w} = \ln{\left(\left|{w}\right| \right)}$$$

$$- v - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{2} = - v - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{{\color{red}{\ln{\left(\left|{w}\right| \right)}}}}{2}$$

回顧一下 $$$w=v + 1$$$

$$- v - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{w}}}\right| \right)}}{2} = - v - \frac{\ln{\left(\left|{v - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{\left(v + 1\right)}}}\right| \right)}}{2}$$

回顧一下 $$$v=\tanh{\left(u \right)}$$$

$$- \frac{\ln{\left(\left|{-1 + {\color{red}{v}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + {\color{red}{v}}}\right| \right)}}{2} - {\color{red}{v}} = - \frac{\ln{\left(\left|{-1 + {\color{red}{\tanh{\left(u \right)}}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + {\color{red}{\tanh{\left(u \right)}}}}\right| \right)}}{2} - {\color{red}{\tanh{\left(u \right)}}}$$

回顧一下 $$$u=\operatorname{acosh}{\left(x \right)}$$$

$$- \frac{\ln{\left(\left|{-1 + \tanh{\left({\color{red}{u}} \right)}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + \tanh{\left({\color{red}{u}} \right)}}\right| \right)}}{2} - \tanh{\left({\color{red}{u}} \right)} = - \frac{\ln{\left(\left|{-1 + \tanh{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + \tanh{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)}}\right| \right)}}{2} - \tanh{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)}$$

因此,

$$\int{\frac{\sqrt{x^{2} - 1}}{x^{2}} d x} = - \frac{\ln{\left(\left|{1 - \frac{\sqrt{x - 1} \sqrt{x + 1}}{x}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + \frac{\sqrt{x - 1} \sqrt{x + 1}}{x}}\right| \right)}}{2} - \frac{\sqrt{x - 1} \sqrt{x + 1}}{x}$$

化簡:

$$\int{\frac{\sqrt{x^{2} - 1}}{x^{2}} d x} = \frac{\frac{x \left(- \ln{\left(\left|{\frac{x - \sqrt{x - 1} \sqrt{x + 1}}{x}}\right| \right)} + \ln{\left(\left|{\frac{x + \sqrt{x - 1} \sqrt{x + 1}}{x}}\right| \right)}\right)}{2} - \sqrt{x - 1} \sqrt{x + 1}}{x}$$

加上積分常數:

$$\int{\frac{\sqrt{x^{2} - 1}}{x^{2}} d x} = \frac{\frac{x \left(- \ln{\left(\left|{\frac{x - \sqrt{x - 1} \sqrt{x + 1}}{x}}\right| \right)} + \ln{\left(\left|{\frac{x + \sqrt{x - 1} \sqrt{x + 1}}{x}}\right| \right)}\right)}{2} - \sqrt{x - 1} \sqrt{x + 1}}{x}+C$$

答案

$$$\int \frac{\sqrt{x^{2} - 1}}{x^{2}}\, dx = \frac{\frac{x \left(- \ln\left(\left|{\frac{x - \sqrt{x - 1} \sqrt{x + 1}}{x}}\right|\right) + \ln\left(\left|{\frac{x + \sqrt{x - 1} \sqrt{x + 1}}{x}}\right|\right)\right)}{2} - \sqrt{x - 1} \sqrt{x + 1}}{x} + C$$$A


Please try a new game Rotatly