$$$\frac{1}{x} - \frac{1}{3 x^{3}}$$$ 的積分
您的輸入
求$$$\int \left(\frac{1}{x} - \frac{1}{3 x^{3}}\right)\, dx$$$。
解答
逐項積分:
$${\color{red}{\int{\left(\frac{1}{x} - \frac{1}{3 x^{3}}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{3 x^{3}} d x} + \int{\frac{1}{x} d x}\right)}}$$
$$$\frac{1}{x}$$$ 的積分是 $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$- \int{\frac{1}{3 x^{3}} d x} + {\color{red}{\int{\frac{1}{x} d x}}} = - \int{\frac{1}{3 x^{3}} d x} + {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{3}$$$ 與 $$$f{\left(x \right)} = \frac{1}{x^{3}}$$$:
$$\ln{\left(\left|{x}\right| \right)} - {\color{red}{\int{\frac{1}{3 x^{3}} d x}}} = \ln{\left(\left|{x}\right| \right)} - {\color{red}{\left(\frac{\int{\frac{1}{x^{3}} d x}}{3}\right)}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-3$$$:
$$\ln{\left(\left|{x}\right| \right)} - \frac{{\color{red}{\int{\frac{1}{x^{3}} d x}}}}{3}=\ln{\left(\left|{x}\right| \right)} - \frac{{\color{red}{\int{x^{-3} d x}}}}{3}=\ln{\left(\left|{x}\right| \right)} - \frac{{\color{red}{\frac{x^{-3 + 1}}{-3 + 1}}}}{3}=\ln{\left(\left|{x}\right| \right)} - \frac{{\color{red}{\left(- \frac{x^{-2}}{2}\right)}}}{3}=\ln{\left(\left|{x}\right| \right)} - \frac{{\color{red}{\left(- \frac{1}{2 x^{2}}\right)}}}{3}$$
因此,
$$\int{\left(\frac{1}{x} - \frac{1}{3 x^{3}}\right)d x} = \ln{\left(\left|{x}\right| \right)} + \frac{1}{6 x^{2}}$$
加上積分常數:
$$\int{\left(\frac{1}{x} - \frac{1}{3 x^{3}}\right)d x} = \ln{\left(\left|{x}\right| \right)} + \frac{1}{6 x^{2}}+C$$
答案
$$$\int \left(\frac{1}{x} - \frac{1}{3 x^{3}}\right)\, dx = \left(\ln\left(\left|{x}\right|\right) + \frac{1}{6 x^{2}}\right) + C$$$A