$$$\frac{1}{x^{2} - 78 x}$$$ 的積分

此計算器將求出 $$$\frac{1}{x^{2} - 78 x}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{1}{x^{2} - 78 x}\, dx$$$

解答

進行部分分式分解(步驟可見 »):

$${\color{red}{\int{\frac{1}{x^{2} - 78 x} d x}}} = {\color{red}{\int{\left(\frac{1}{78 \left(x - 78\right)} - \frac{1}{78 x}\right)d x}}}$$

逐項積分:

$${\color{red}{\int{\left(\frac{1}{78 \left(x - 78\right)} - \frac{1}{78 x}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{78 x} d x} + \int{\frac{1}{78 \left(x - 78\right)} d x}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{78}$$$$$$f{\left(x \right)} = \frac{1}{x}$$$

$$\int{\frac{1}{78 \left(x - 78\right)} d x} - {\color{red}{\int{\frac{1}{78 x} d x}}} = \int{\frac{1}{78 \left(x - 78\right)} d x} - {\color{red}{\left(\frac{\int{\frac{1}{x} d x}}{78}\right)}}$$

$$$\frac{1}{x}$$$ 的積分是 $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$

$$\int{\frac{1}{78 \left(x - 78\right)} d x} - \frac{{\color{red}{\int{\frac{1}{x} d x}}}}{78} = \int{\frac{1}{78 \left(x - 78\right)} d x} - \frac{{\color{red}{\ln{\left(\left|{x}\right| \right)}}}}{78}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{78}$$$$$$f{\left(x \right)} = \frac{1}{x - 78}$$$

$$- \frac{\ln{\left(\left|{x}\right| \right)}}{78} + {\color{red}{\int{\frac{1}{78 \left(x - 78\right)} d x}}} = - \frac{\ln{\left(\left|{x}\right| \right)}}{78} + {\color{red}{\left(\frac{\int{\frac{1}{x - 78} d x}}{78}\right)}}$$

$$$u=x - 78$$$

$$$du=\left(x - 78\right)^{\prime }dx = 1 dx$$$ (步驟見»),並可得 $$$dx = du$$$

該積分可改寫為

$$- \frac{\ln{\left(\left|{x}\right| \right)}}{78} + \frac{{\color{red}{\int{\frac{1}{x - 78} d x}}}}{78} = - \frac{\ln{\left(\left|{x}\right| \right)}}{78} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{78}$$

$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$

$$- \frac{\ln{\left(\left|{x}\right| \right)}}{78} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{78} = - \frac{\ln{\left(\left|{x}\right| \right)}}{78} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{78}$$

回顧一下 $$$u=x - 78$$$

$$- \frac{\ln{\left(\left|{x}\right| \right)}}{78} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{78} = - \frac{\ln{\left(\left|{x}\right| \right)}}{78} + \frac{\ln{\left(\left|{{\color{red}{\left(x - 78\right)}}}\right| \right)}}{78}$$

因此,

$$\int{\frac{1}{x^{2} - 78 x} d x} = - \frac{\ln{\left(\left|{x}\right| \right)}}{78} + \frac{\ln{\left(\left|{x - 78}\right| \right)}}{78}$$

化簡:

$$\int{\frac{1}{x^{2} - 78 x} d x} = \frac{- \ln{\left(\left|{x}\right| \right)} + \ln{\left(\left|{x - 78}\right| \right)}}{78}$$

加上積分常數:

$$\int{\frac{1}{x^{2} - 78 x} d x} = \frac{- \ln{\left(\left|{x}\right| \right)} + \ln{\left(\left|{x - 78}\right| \right)}}{78}+C$$

答案

$$$\int \frac{1}{x^{2} - 78 x}\, dx = \frac{- \ln\left(\left|{x}\right|\right) + \ln\left(\left|{x - 78}\right|\right)}{78} + C$$$A


Please try a new game Rotatly