$$$\frac{1}{x \ln^{3}\left(x\right)}$$$ 對 $$$t$$$ 的積分
您的輸入
求$$$\int \frac{1}{x \ln^{3}\left(x\right)}\, dt$$$。
解答
配合 $$$c=\frac{1}{x \ln{\left(x \right)}^{3}}$$$,應用常數法則 $$$\int c\, dt = c t$$$:
$${\color{red}{\int{\frac{1}{x \ln{\left(x \right)}^{3}} d t}}} = {\color{red}{\frac{t}{x \ln{\left(x \right)}^{3}}}}$$
因此,
$$\int{\frac{1}{x \ln{\left(x \right)}^{3}} d t} = \frac{t}{x \ln{\left(x \right)}^{3}}$$
加上積分常數:
$$\int{\frac{1}{x \ln{\left(x \right)}^{3}} d t} = \frac{t}{x \ln{\left(x \right)}^{3}}+C$$
答案
$$$\int \frac{1}{x \ln^{3}\left(x\right)}\, dt = \frac{t}{x \ln^{3}\left(x\right)} + C$$$A
Please try a new game Rotatly