$$$\frac{1}{2 \sqrt{1 - x^{2}}}$$$ 的積分
您的輸入
求$$$\int \frac{1}{2 \sqrt{1 - x^{2}}}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(x \right)} = \frac{1}{\sqrt{1 - x^{2}}}$$$:
$${\color{red}{\int{\frac{1}{2 \sqrt{1 - x^{2}}} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{\sqrt{1 - x^{2}}} d x}}{2}\right)}}$$
$$$\frac{1}{\sqrt{1 - x^{2}}}$$$ 的積分是 $$$\int{\frac{1}{\sqrt{1 - x^{2}}} d x} = \operatorname{asin}{\left(x \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{\sqrt{1 - x^{2}}} d x}}}}{2} = \frac{{\color{red}{\operatorname{asin}{\left(x \right)}}}}{2}$$
因此,
$$\int{\frac{1}{2 \sqrt{1 - x^{2}}} d x} = \frac{\operatorname{asin}{\left(x \right)}}{2}$$
加上積分常數:
$$\int{\frac{1}{2 \sqrt{1 - x^{2}}} d x} = \frac{\operatorname{asin}{\left(x \right)}}{2}+C$$
答案
$$$\int \frac{1}{2 \sqrt{1 - x^{2}}}\, dx = \frac{\operatorname{asin}{\left(x \right)}}{2} + C$$$A