$$$\frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}$$$ 的積分

此計算器將求出 $$$\frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}\, dx$$$

解答

將分子與分母同時乘以 $$$\frac{1}{\cos^{2}{\left(x \right)}}$$$,並將 $$$\frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$ 轉換為 $$$\frac{1}{\tan^{2}{\left(x \right)}}$$$:

$${\color{red}{\int{\frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{\cos^{4}{\left(x \right)} \tan^{2}{\left(x \right)}} d x}}}$$

將兩個餘弦因式提出,並使用公式 $$$\frac{1}{\cos^{2}{\left(x \right)}}=\sec^{2}{\left(x \right)}$$$ 將它們改寫為以正割表示。:

$${\color{red}{\int{\frac{1}{\cos^{4}{\left(x \right)} \tan^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)} \tan^{2}{\left(x \right)}} d x}}}$$

使用公式 $$$\cos^{2}{\left(x \right)}=\frac{1}{\tan^{2}{\left(x \right)} + 1}$$$,以正切表示餘弦:

$${\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)} \tan^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\left(\tan^{2}{\left(x \right)} + 1\right) \sec^{2}{\left(x \right)}}{\tan^{2}{\left(x \right)}} d x}}}$$

$$$u=\tan{\left(x \right)}$$$

$$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (步驟見»),並可得 $$$\sec^{2}{\left(x \right)} dx = du$$$

因此,

$${\color{red}{\int{\frac{\left(\tan^{2}{\left(x \right)} + 1\right) \sec^{2}{\left(x \right)}}{\tan^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{u^{2} + 1}{u^{2}} d u}}}$$

Expand the expression:

$${\color{red}{\int{\frac{u^{2} + 1}{u^{2}} d u}}} = {\color{red}{\int{\left(1 + \frac{1}{u^{2}}\right)d u}}}$$

逐項積分:

$${\color{red}{\int{\left(1 + \frac{1}{u^{2}}\right)d u}}} = {\color{red}{\left(\int{1 d u} + \int{\frac{1}{u^{2}} d u}\right)}}$$

配合 $$$c=1$$$,應用常數法則 $$$\int c\, du = c u$$$

$$\int{\frac{1}{u^{2}} d u} + {\color{red}{\int{1 d u}}} = \int{\frac{1}{u^{2}} d u} + {\color{red}{u}}$$

套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-2$$$

$$u + {\color{red}{\int{\frac{1}{u^{2}} d u}}}=u + {\color{red}{\int{u^{-2} d u}}}=u + {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=u + {\color{red}{\left(- u^{-1}\right)}}=u + {\color{red}{\left(- \frac{1}{u}\right)}}$$

回顧一下 $$$u=\tan{\left(x \right)}$$$

$$- {\color{red}{u}}^{-1} + {\color{red}{u}} = - {\color{red}{\tan{\left(x \right)}}}^{-1} + {\color{red}{\tan{\left(x \right)}}}$$

因此,

$$\int{\frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}} d x} = \tan{\left(x \right)} - \frac{1}{\tan{\left(x \right)}}$$

加上積分常數:

$$\int{\frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}} d x} = \tan{\left(x \right)} - \frac{1}{\tan{\left(x \right)}}+C$$

答案

$$$\int \frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}\, dx = \left(\tan{\left(x \right)} - \frac{1}{\tan{\left(x \right)}}\right) + C$$$A


Please try a new game Rotatly