$$$\frac{\sqrt{2}}{2 \left(- x^{2} - 6 x + 7\right)}$$$ 的積分
相關計算器: 定積分與廣義積分計算器
您的輸入
求$$$\int \frac{\sqrt{2}}{2 \left(- x^{2} - 6 x + 7\right)}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{\sqrt{2}}{2}$$$ 與 $$$f{\left(x \right)} = \frac{1}{- x^{2} - 6 x + 7}$$$:
$${\color{red}{\int{\frac{\sqrt{2}}{2 \left(- x^{2} - 6 x + 7\right)} d x}}} = {\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{- x^{2} - 6 x + 7} d x}}{2}\right)}}$$
進行部分分式分解(步驟可見 »):
$$\frac{\sqrt{2} {\color{red}{\int{\frac{1}{- x^{2} - 6 x + 7} d x}}}}{2} = \frac{\sqrt{2} {\color{red}{\int{\left(\frac{1}{8 \left(x + 7\right)} - \frac{1}{8 \left(x - 1\right)}\right)d x}}}}{2}$$
逐項積分:
$$\frac{\sqrt{2} {\color{red}{\int{\left(\frac{1}{8 \left(x + 7\right)} - \frac{1}{8 \left(x - 1\right)}\right)d x}}}}{2} = \frac{\sqrt{2} {\color{red}{\left(- \int{\frac{1}{8 \left(x - 1\right)} d x} + \int{\frac{1}{8 \left(x + 7\right)} d x}\right)}}}{2}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{8}$$$ 與 $$$f{\left(x \right)} = \frac{1}{x - 1}$$$:
$$\frac{\sqrt{2} \left(\int{\frac{1}{8 \left(x + 7\right)} d x} - {\color{red}{\int{\frac{1}{8 \left(x - 1\right)} d x}}}\right)}{2} = \frac{\sqrt{2} \left(\int{\frac{1}{8 \left(x + 7\right)} d x} - {\color{red}{\left(\frac{\int{\frac{1}{x - 1} d x}}{8}\right)}}\right)}{2}$$
令 $$$u=x - 1$$$。
則 $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (步驟見»),並可得 $$$dx = du$$$。
因此,
$$\frac{\sqrt{2} \left(\int{\frac{1}{8 \left(x + 7\right)} d x} - \frac{{\color{red}{\int{\frac{1}{x - 1} d x}}}}{8}\right)}{2} = \frac{\sqrt{2} \left(\int{\frac{1}{8 \left(x + 7\right)} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{8}\right)}{2}$$
$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{\sqrt{2} \left(\int{\frac{1}{8 \left(x + 7\right)} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{8}\right)}{2} = \frac{\sqrt{2} \left(\int{\frac{1}{8 \left(x + 7\right)} d x} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{8}\right)}{2}$$
回顧一下 $$$u=x - 1$$$:
$$\frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{8} + \int{\frac{1}{8 \left(x + 7\right)} d x}\right)}{2} = \frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}}{8} + \int{\frac{1}{8 \left(x + 7\right)} d x}\right)}{2}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{8}$$$ 與 $$$f{\left(x \right)} = \frac{1}{x + 7}$$$:
$$\frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x - 1}\right| \right)}}{8} + {\color{red}{\int{\frac{1}{8 \left(x + 7\right)} d x}}}\right)}{2} = \frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x - 1}\right| \right)}}{8} + {\color{red}{\left(\frac{\int{\frac{1}{x + 7} d x}}{8}\right)}}\right)}{2}$$
令 $$$u=x + 7$$$。
則 $$$du=\left(x + 7\right)^{\prime }dx = 1 dx$$$ (步驟見»),並可得 $$$dx = du$$$。
該積分變為
$$\frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x - 1}\right| \right)}}{8} + \frac{{\color{red}{\int{\frac{1}{x + 7} d x}}}}{8}\right)}{2} = \frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x - 1}\right| \right)}}{8} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{8}\right)}{2}$$
$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x - 1}\right| \right)}}{8} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{8}\right)}{2} = \frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x - 1}\right| \right)}}{8} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{8}\right)}{2}$$
回顧一下 $$$u=x + 7$$$:
$$\frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x - 1}\right| \right)}}{8} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{8}\right)}{2} = \frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x - 1}\right| \right)}}{8} + \frac{\ln{\left(\left|{{\color{red}{\left(x + 7\right)}}}\right| \right)}}{8}\right)}{2}$$
因此,
$$\int{\frac{\sqrt{2}}{2 \left(- x^{2} - 6 x + 7\right)} d x} = \frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x - 1}\right| \right)}}{8} + \frac{\ln{\left(\left|{x + 7}\right| \right)}}{8}\right)}{2}$$
化簡:
$$\int{\frac{\sqrt{2}}{2 \left(- x^{2} - 6 x + 7\right)} d x} = \frac{\sqrt{2} \left(- \ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{x + 7}\right| \right)}\right)}{16}$$
加上積分常數:
$$\int{\frac{\sqrt{2}}{2 \left(- x^{2} - 6 x + 7\right)} d x} = \frac{\sqrt{2} \left(- \ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{x + 7}\right| \right)}\right)}{16}+C$$
答案
$$$\int \frac{\sqrt{2}}{2 \left(- x^{2} - 6 x + 7\right)}\, dx = \frac{\sqrt{2} \left(- \ln\left(\left|{x - 1}\right|\right) + \ln\left(\left|{x + 7}\right|\right)\right)}{16} + C$$$A