$$$- \frac{x^{2} \left(3 - \frac{1}{x^{2}}\right)}{3}$$$ 的積分
相關計算器: 定積分與廣義積分計算器
您的輸入
求$$$\int \left(- \frac{x^{2} \left(3 - \frac{1}{x^{2}}\right)}{3}\right)\, dx$$$。
解答
已將輸入重寫為:$$$\int{\left(- \frac{x^{2} \left(3 - \frac{1}{x^{2}}\right)}{3}\right)d x}=\int{x^{2} \left(-1 + \frac{1}{3 x^{2}}\right) d x}$$$。
簡化被積函數:
$${\color{red}{\int{x^{2} \left(-1 + \frac{1}{3 x^{2}}\right) d x}}} = {\color{red}{\int{\left(\frac{1}{3} - x^{2}\right)d x}}}$$
逐項積分:
$${\color{red}{\int{\left(\frac{1}{3} - x^{2}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{3} d x} - \int{x^{2} d x}\right)}}$$
配合 $$$c=\frac{1}{3}$$$,應用常數法則 $$$\int c\, dx = c x$$$:
$$- \int{x^{2} d x} + {\color{red}{\int{\frac{1}{3} d x}}} = - \int{x^{2} d x} + {\color{red}{\left(\frac{x}{3}\right)}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$:
$$\frac{x}{3} - {\color{red}{\int{x^{2} d x}}}=\frac{x}{3} - {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=\frac{x}{3} - {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
因此,
$$\int{x^{2} \left(-1 + \frac{1}{3 x^{2}}\right) d x} = - \frac{x^{3}}{3} + \frac{x}{3}$$
化簡:
$$\int{x^{2} \left(-1 + \frac{1}{3 x^{2}}\right) d x} = \frac{x \left(1 - x^{2}\right)}{3}$$
加上積分常數:
$$\int{x^{2} \left(-1 + \frac{1}{3 x^{2}}\right) d x} = \frac{x \left(1 - x^{2}\right)}{3}+C$$
答案
$$$\int \left(- \frac{x^{2} \left(3 - \frac{1}{x^{2}}\right)}{3}\right)\, dx = \frac{x \left(1 - x^{2}\right)}{3} + C$$$A