$$$\frac{5 x}{\left(4 - 3 x^{2}\right)^{3}}$$$ 的積分

此計算器將求出 $$$\frac{5 x}{\left(4 - 3 x^{2}\right)^{3}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{5 x}{\left(4 - 3 x^{2}\right)^{3}}\, dx$$$

解答

$$$u=4 - 3 x^{2}$$$

$$$du=\left(4 - 3 x^{2}\right)^{\prime }dx = - 6 x dx$$$ (步驟見»),並可得 $$$x dx = - \frac{du}{6}$$$

因此,

$${\color{red}{\int{\frac{5 x}{\left(4 - 3 x^{2}\right)^{3}} d x}}} = {\color{red}{\int{\left(- \frac{5}{6 u^{3}}\right)d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=- \frac{5}{6}$$$$$$f{\left(u \right)} = \frac{1}{u^{3}}$$$

$${\color{red}{\int{\left(- \frac{5}{6 u^{3}}\right)d u}}} = {\color{red}{\left(- \frac{5 \int{\frac{1}{u^{3}} d u}}{6}\right)}}$$

套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-3$$$

$$- \frac{5 {\color{red}{\int{\frac{1}{u^{3}} d u}}}}{6}=- \frac{5 {\color{red}{\int{u^{-3} d u}}}}{6}=- \frac{5 {\color{red}{\frac{u^{-3 + 1}}{-3 + 1}}}}{6}=- \frac{5 {\color{red}{\left(- \frac{u^{-2}}{2}\right)}}}{6}=- \frac{5 {\color{red}{\left(- \frac{1}{2 u^{2}}\right)}}}{6}$$

回顧一下 $$$u=4 - 3 x^{2}$$$

$$\frac{5 {\color{red}{u}}^{-2}}{12} = \frac{5 {\color{red}{\left(4 - 3 x^{2}\right)}}^{-2}}{12}$$

因此,

$$\int{\frac{5 x}{\left(4 - 3 x^{2}\right)^{3}} d x} = \frac{5}{12 \left(4 - 3 x^{2}\right)^{2}}$$

化簡:

$$\int{\frac{5 x}{\left(4 - 3 x^{2}\right)^{3}} d x} = \frac{5}{12 \left(3 x^{2} - 4\right)^{2}}$$

加上積分常數:

$$\int{\frac{5 x}{\left(4 - 3 x^{2}\right)^{3}} d x} = \frac{5}{12 \left(3 x^{2} - 4\right)^{2}}+C$$

答案

$$$\int \frac{5 x}{\left(4 - 3 x^{2}\right)^{3}}\, dx = \frac{5}{12 \left(3 x^{2} - 4\right)^{2}} + C$$$A


Please try a new game Rotatly