$$$\frac{4 t}{\sqrt{3 t^{2} - 7}}$$$ 的積分

此計算器將求出 $$$\frac{4 t}{\sqrt{3 t^{2} - 7}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{4 t}{\sqrt{3 t^{2} - 7}}\, dt$$$

解答

$$$u=3 t^{2} - 7$$$

$$$du=\left(3 t^{2} - 7\right)^{\prime }dt = 6 t dt$$$ (步驟見»),並可得 $$$t dt = \frac{du}{6}$$$

該積分可改寫為

$${\color{red}{\int{\frac{4 t}{\sqrt{3 t^{2} - 7}} d t}}} = {\color{red}{\int{\frac{2}{3 \sqrt{u}} d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{2}{3}$$$$$$f{\left(u \right)} = \frac{1}{\sqrt{u}}$$$

$${\color{red}{\int{\frac{2}{3 \sqrt{u}} d u}}} = {\color{red}{\left(\frac{2 \int{\frac{1}{\sqrt{u}} d u}}{3}\right)}}$$

套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=- \frac{1}{2}$$$

$$\frac{2 {\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}}{3}=\frac{2 {\color{red}{\int{u^{- \frac{1}{2}} d u}}}}{3}=\frac{2 {\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{3}=\frac{2 {\color{red}{\left(2 u^{\frac{1}{2}}\right)}}}{3}=\frac{2 {\color{red}{\left(2 \sqrt{u}\right)}}}{3}$$

回顧一下 $$$u=3 t^{2} - 7$$$

$$\frac{4 \sqrt{{\color{red}{u}}}}{3} = \frac{4 \sqrt{{\color{red}{\left(3 t^{2} - 7\right)}}}}{3}$$

因此,

$$\int{\frac{4 t}{\sqrt{3 t^{2} - 7}} d t} = \frac{4 \sqrt{3 t^{2} - 7}}{3}$$

加上積分常數:

$$\int{\frac{4 t}{\sqrt{3 t^{2} - 7}} d t} = \frac{4 \sqrt{3 t^{2} - 7}}{3}+C$$

答案

$$$\int \frac{4 t}{\sqrt{3 t^{2} - 7}}\, dt = \frac{4 \sqrt{3 t^{2} - 7}}{3} + C$$$A


Please try a new game Rotatly