$$$\frac{\ln^{2}\left(x\right)}{x}$$$ 對 $$$t$$$ 的積分
您的輸入
求$$$\int \frac{\ln^{2}\left(x\right)}{x}\, dt$$$。
解答
配合 $$$c=\frac{\ln{\left(x \right)}^{2}}{x}$$$,應用常數法則 $$$\int c\, dt = c t$$$:
$${\color{red}{\int{\frac{\ln{\left(x \right)}^{2}}{x} d t}}} = {\color{red}{\frac{t \ln{\left(x \right)}^{2}}{x}}}$$
因此,
$$\int{\frac{\ln{\left(x \right)}^{2}}{x} d t} = \frac{t \ln{\left(x \right)}^{2}}{x}$$
加上積分常數:
$$\int{\frac{\ln{\left(x \right)}^{2}}{x} d t} = \frac{t \ln{\left(x \right)}^{2}}{x}+C$$
答案
$$$\int \frac{\ln^{2}\left(x\right)}{x}\, dt = \frac{t \ln^{2}\left(x\right)}{x} + C$$$A
Please try a new game Rotatly