$$$\frac{\sqrt{3} \cos{\left(\sqrt{3} \sqrt{t} \right)}}{3 \sqrt{t}}$$$ 的積分

此計算器將求出 $$$\frac{\sqrt{3} \cos{\left(\sqrt{3} \sqrt{t} \right)}}{3 \sqrt{t}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{\sqrt{3} \cos{\left(\sqrt{3} \sqrt{t} \right)}}{3 \sqrt{t}}\, dt$$$

解答

套用常數倍法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$,使用 $$$c=\frac{\sqrt{3}}{3}$$$$$$f{\left(t \right)} = \frac{\cos{\left(\sqrt{3} \sqrt{t} \right)}}{\sqrt{t}}$$$

$${\color{red}{\int{\frac{\sqrt{3} \cos{\left(\sqrt{3} \sqrt{t} \right)}}{3 \sqrt{t}} d t}}} = {\color{red}{\left(\frac{\sqrt{3} \int{\frac{\cos{\left(\sqrt{3} \sqrt{t} \right)}}{\sqrt{t}} d t}}{3}\right)}}$$

$$$u=\sqrt{3} \sqrt{t}$$$

$$$du=\left(\sqrt{3} \sqrt{t}\right)^{\prime }dt = \frac{\sqrt{3}}{2 \sqrt{t}} dt$$$ (步驟見»),並可得 $$$\frac{dt}{\sqrt{t}} = \frac{2 \sqrt{3} du}{3}$$$

因此,

$$\frac{\sqrt{3} {\color{red}{\int{\frac{\cos{\left(\sqrt{3} \sqrt{t} \right)}}{\sqrt{t}} d t}}}}{3} = \frac{\sqrt{3} {\color{red}{\int{\frac{2 \sqrt{3} \cos{\left(u \right)}}{3} d u}}}}{3}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{2 \sqrt{3}}{3}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$

$$\frac{\sqrt{3} {\color{red}{\int{\frac{2 \sqrt{3} \cos{\left(u \right)}}{3} d u}}}}{3} = \frac{\sqrt{3} {\color{red}{\left(\frac{2 \sqrt{3} \int{\cos{\left(u \right)} d u}}{3}\right)}}}{3}$$

餘弦函數的積分為 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$

$$\frac{2 {\color{red}{\int{\cos{\left(u \right)} d u}}}}{3} = \frac{2 {\color{red}{\sin{\left(u \right)}}}}{3}$$

回顧一下 $$$u=\sqrt{3} \sqrt{t}$$$

$$\frac{2 \sin{\left({\color{red}{u}} \right)}}{3} = \frac{2 \sin{\left({\color{red}{\sqrt{3} \sqrt{t}}} \right)}}{3}$$

因此,

$$\int{\frac{\sqrt{3} \cos{\left(\sqrt{3} \sqrt{t} \right)}}{3 \sqrt{t}} d t} = \frac{2 \sin{\left(\sqrt{3} \sqrt{t} \right)}}{3}$$

加上積分常數:

$$\int{\frac{\sqrt{3} \cos{\left(\sqrt{3} \sqrt{t} \right)}}{3 \sqrt{t}} d t} = \frac{2 \sin{\left(\sqrt{3} \sqrt{t} \right)}}{3}+C$$

答案

$$$\int \frac{\sqrt{3} \cos{\left(\sqrt{3} \sqrt{t} \right)}}{3 \sqrt{t}}\, dt = \frac{2 \sin{\left(\sqrt{3} \sqrt{t} \right)}}{3} + C$$$A


Please try a new game Rotatly