$$$\sqrt{3} t^{2} - 2$$$ 的積分
您的輸入
求$$$\int \left(\sqrt{3} t^{2} - 2\right)\, dt$$$。
解答
逐項積分:
$${\color{red}{\int{\left(\sqrt{3} t^{2} - 2\right)d t}}} = {\color{red}{\left(- \int{2 d t} + \int{\sqrt{3} t^{2} d t}\right)}}$$
配合 $$$c=2$$$,應用常數法則 $$$\int c\, dt = c t$$$:
$$\int{\sqrt{3} t^{2} d t} - {\color{red}{\int{2 d t}}} = \int{\sqrt{3} t^{2} d t} - {\color{red}{\left(2 t\right)}}$$
套用常數倍法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$,使用 $$$c=\sqrt{3}$$$ 與 $$$f{\left(t \right)} = t^{2}$$$:
$$- 2 t + {\color{red}{\int{\sqrt{3} t^{2} d t}}} = - 2 t + {\color{red}{\sqrt{3} \int{t^{2} d t}}}$$
套用冪次法則 $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$:
$$- 2 t + \sqrt{3} {\color{red}{\int{t^{2} d t}}}=- 2 t + \sqrt{3} {\color{red}{\frac{t^{1 + 2}}{1 + 2}}}=- 2 t + \sqrt{3} {\color{red}{\left(\frac{t^{3}}{3}\right)}}$$
因此,
$$\int{\left(\sqrt{3} t^{2} - 2\right)d t} = \frac{\sqrt{3} t^{3}}{3} - 2 t$$
化簡:
$$\int{\left(\sqrt{3} t^{2} - 2\right)d t} = \frac{t \left(\sqrt{3} t^{2} - 6\right)}{3}$$
加上積分常數:
$$\int{\left(\sqrt{3} t^{2} - 2\right)d t} = \frac{t \left(\sqrt{3} t^{2} - 6\right)}{3}+C$$
答案
$$$\int \left(\sqrt{3} t^{2} - 2\right)\, dt = \frac{t \left(\sqrt{3} t^{2} - 6\right)}{3} + C$$$A