$$$x^{2} \ln^{2}\left(x\right)$$$ 的積分

此計算器將求出 $$$x^{2} \ln^{2}\left(x\right)$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int x^{2} \ln^{2}\left(x\right)\, dx$$$

解答

對於積分 $$$\int{x^{2} \ln{\left(x \right)}^{2} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=\ln{\left(x \right)}^{2}$$$$$$\operatorname{dv}=x^{2} dx$$$

$$$\operatorname{du}=\left(\ln{\left(x \right)}^{2}\right)^{\prime }dx=\frac{2 \ln{\left(x \right)}}{x} dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{x^{2} d x}=\frac{x^{3}}{3}$$$(步驟見 »)。

因此,

$${\color{red}{\int{x^{2} \ln{\left(x \right)}^{2} d x}}}={\color{red}{\left(\ln{\left(x \right)}^{2} \cdot \frac{x^{3}}{3}-\int{\frac{x^{3}}{3} \cdot \frac{2 \ln{\left(x \right)}}{x} d x}\right)}}={\color{red}{\left(\frac{x^{3} \ln{\left(x \right)}^{2}}{3} - \int{\frac{2 x^{2} \ln{\left(x \right)}}{3} d x}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{2}{3}$$$$$$f{\left(x \right)} = x^{2} \ln{\left(x \right)}$$$

$$\frac{x^{3} \ln{\left(x \right)}^{2}}{3} - {\color{red}{\int{\frac{2 x^{2} \ln{\left(x \right)}}{3} d x}}} = \frac{x^{3} \ln{\left(x \right)}^{2}}{3} - {\color{red}{\left(\frac{2 \int{x^{2} \ln{\left(x \right)} d x}}{3}\right)}}$$

對於積分 $$$\int{x^{2} \ln{\left(x \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=\ln{\left(x \right)}$$$$$$\operatorname{dv}=x^{2} dx$$$

$$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$(步驟見 »),且 $$$\operatorname{v}=\int{x^{2} d x}=\frac{x^{3}}{3}$$$(步驟見 »)。

該積分變為

$$\frac{x^{3} \ln{\left(x \right)}^{2}}{3} - \frac{2 {\color{red}{\int{x^{2} \ln{\left(x \right)} d x}}}}{3}=\frac{x^{3} \ln{\left(x \right)}^{2}}{3} - \frac{2 {\color{red}{\left(\ln{\left(x \right)} \cdot \frac{x^{3}}{3}-\int{\frac{x^{3}}{3} \cdot \frac{1}{x} d x}\right)}}}{3}=\frac{x^{3} \ln{\left(x \right)}^{2}}{3} - \frac{2 {\color{red}{\left(\frac{x^{3} \ln{\left(x \right)}}{3} - \int{\frac{x^{2}}{3} d x}\right)}}}{3}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{3}$$$$$$f{\left(x \right)} = x^{2}$$$

$$\frac{x^{3} \ln{\left(x \right)}^{2}}{3} - \frac{2 x^{3} \ln{\left(x \right)}}{9} + \frac{2 {\color{red}{\int{\frac{x^{2}}{3} d x}}}}{3} = \frac{x^{3} \ln{\left(x \right)}^{2}}{3} - \frac{2 x^{3} \ln{\left(x \right)}}{9} + \frac{2 {\color{red}{\left(\frac{\int{x^{2} d x}}{3}\right)}}}{3}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$

$$\frac{x^{3} \ln{\left(x \right)}^{2}}{3} - \frac{2 x^{3} \ln{\left(x \right)}}{9} + \frac{2 {\color{red}{\int{x^{2} d x}}}}{9}=\frac{x^{3} \ln{\left(x \right)}^{2}}{3} - \frac{2 x^{3} \ln{\left(x \right)}}{9} + \frac{2 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{9}=\frac{x^{3} \ln{\left(x \right)}^{2}}{3} - \frac{2 x^{3} \ln{\left(x \right)}}{9} + \frac{2 {\color{red}{\left(\frac{x^{3}}{3}\right)}}}{9}$$

因此,

$$\int{x^{2} \ln{\left(x \right)}^{2} d x} = \frac{x^{3} \ln{\left(x \right)}^{2}}{3} - \frac{2 x^{3} \ln{\left(x \right)}}{9} + \frac{2 x^{3}}{27}$$

化簡:

$$\int{x^{2} \ln{\left(x \right)}^{2} d x} = \frac{x^{3} \left(9 \ln{\left(x \right)}^{2} - 6 \ln{\left(x \right)} + 2\right)}{27}$$

加上積分常數:

$$\int{x^{2} \ln{\left(x \right)}^{2} d x} = \frac{x^{3} \left(9 \ln{\left(x \right)}^{2} - 6 \ln{\left(x \right)} + 2\right)}{27}+C$$

答案

$$$\int x^{2} \ln^{2}\left(x\right)\, dx = \frac{x^{3} \left(9 \ln^{2}\left(x\right) - 6 \ln\left(x\right) + 2\right)}{27} + C$$$A


Please try a new game Rotatly