$$$5^{x^{2}} x$$$ 的積分

此計算器將求出 $$$5^{x^{2}} x$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int 5^{x^{2}} x\, dx$$$

解答

$$$u=x^{2}$$$

$$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (步驟見»),並可得 $$$x dx = \frac{du}{2}$$$

該積分可改寫為

$${\color{red}{\int{5^{x^{2}} x d x}}} = {\color{red}{\int{\frac{5^{u}}{2} d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = 5^{u}$$$

$${\color{red}{\int{\frac{5^{u}}{2} d u}}} = {\color{red}{\left(\frac{\int{5^{u} d u}}{2}\right)}}$$

Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=5$$$:

$$\frac{{\color{red}{\int{5^{u} d u}}}}{2} = \frac{{\color{red}{\frac{5^{u}}{\ln{\left(5 \right)}}}}}{2}$$

回顧一下 $$$u=x^{2}$$$

$$\frac{5^{{\color{red}{u}}}}{2 \ln{\left(5 \right)}} = \frac{5^{{\color{red}{x^{2}}}}}{2 \ln{\left(5 \right)}}$$

因此,

$$\int{5^{x^{2}} x d x} = \frac{5^{x^{2}}}{2 \ln{\left(5 \right)}}$$

加上積分常數:

$$\int{5^{x^{2}} x d x} = \frac{5^{x^{2}}}{2 \ln{\left(5 \right)}}+C$$

答案

$$$\int 5^{x^{2}} x\, dx = \frac{5^{x^{2}}}{2 \ln\left(5\right)} + C$$$A


Please try a new game Rotatly